Answer:
The horizontal conductivity is 41.9 m/d.
The vertical conductivity is 37.2 m/d.
Explanation:
Given that,
Thickness of A = 8.0 m
Conductivity = 25.0 m/d
Thickness of B = 2.0 m
Conductivity = 142 m/d
Thickness of C = 34 m
Conductivity = 40 m/d
We need to calculate the horizontal conductivity
Using formula of horizontal conductivity
Put the value into the formula
We need to calculate the vertical conductivity
Using formula of vertical conductivity
Put the value into the formula
Hence, The horizontal conductivity is 41.9 m/d.
The vertical conductivity is 37.2 m/d.
Answer: both mm and inches on each dimension in a sketch (with the main dimension in one format and the other in brackets below it), in the way you can have dual dimensions shown when detailing an idw view.
personally think it would look a mess/cluttered with even more text all over the sketch environment, but everyone's differenent.
If it's any help - you know you can enter dimensions in either format? If you're working in mm you can still dimension a line and type "2in" and vice-versa. Probably know this already, but no harm saying it, just in case.
You can enter the units directly in or mm and Inventor will convert to current document settings (which you can change - maybe someone can come up with a simple toggle icon to toggle the document settings). Tools>Document Settings>Units
Unlike SolidWorks when you edit the dimension the original entry shows in the dialog box so it makes it easy to keep track of different units even if they aren't always displayed. (SWx does the conversion or equation and then that is what you get.)
I work quite a bit in inch and metric and combination (ex metric frame motor on inch machine) and it doesn't seem to be a real difficulty to me.
Answer:
Explanation:
Pie charts generally should have no more than eight segments.
Answer:
375 KPa
Explanation:
From the question given above, the following data were obtained:
Initial pressure (P₁) = 125 KPa
Initial temperature (T₁) = 300 K
Final temperature (T₂) = 900 K
Final pressure (P₂) =?
The new (i.e final) pressure of the gas can be obtained as follow:
P₁/T₁ = P₂/T₂
125 / 300 = P₂ / 900
Cross multiply
300 × P₂ = 125 × 900
300 × P₂ = 112500
Divide both side by 300
P₂ = 112500 / 300
P₂ = 375 KPa
Thus, the new pressure of the gas is 375 KPa