Answer:
By nuclear fission
Explanation:
<u>The sun generates enormous energy through the process of nuclear fusion.</u>
<em>The core or the innermost part of the sun is characterized by high temperature and pressure. These two factors cause the separation of nuclei from electrons and the fusion of hydrogen nuclei to form a helium atom. </em>
During the fusion process, energy is released.
Answer:
Option B) The fuel for nuclear fusion comes from sea water
Explanation:
Nuclear fusion can not be carried out by using any type of water as water is composed of stable water molecules (
which is quite difficult to be decayed by any simple method.
Moreover, fusion reactions demands the combination of nuclei of lighter elements for which it makes use of the heavy isotopes of Hydrogen that are Deuterium and Tritium as fuel to carry out the nuclear fusion.
<u>Answer:</u>
The correct answer option is momentum.
<u>Explanation:</u>
Momentum is the product of an object's mass and velocity.
It is a term which describes the relationship between the mass of an object and the velocity of an object.
Momentum can be represented in the form of an equation as:
P = mv
where P is the momentum,
m is the mass of the object; and v is the velocity of that object.
Answer:
Explanation:
- given S = distance from the first = 3.20cm = 0.032m, t = 1.30×10−8 s
- acceleration = 0.032 X 2 /(1.30×10−8)^2
a = 3.79 x 10^14m/s^2
E = ma /q = 9.11 x 10^-31 x 3.79 x 10^14 / 1.6 x 10^-19
E = magnitude of this electric field. = 2156.3N/C
b) Find the speed of the electron when it strikes the second plate ; V^2 = 2as
= 2 X 3.79 x 10^14 X 0.032
= 4.92 X 10^6m/s
Answer:
60 rad/s
Explanation:
∑τ = Iα
Fr = Iα
For a solid disc, I = ½ mr².
Fr = ½ mr² α
α = 2F / (mr)
α = 2 (20 N) / (0.25 kg × 0.30 m)
α = 533.33 rad/s²
The arc length is 1 m, so the angle is:
s = rθ
1 m = 0.30 m θ
θ = 3.33 rad
Use constant acceleration equation to find ω.
ω² = ω₀² + 2αΔθ
ω² = (0 rad/s)² + 2 (533.33 rad/s²) (3.33 rad)
ω = 59.6 rad/s
Rounding to one significant figure, the angular velocity is 60 rad/s.