A CH compound is combusted to produce CO2 and H2O
CnHm + O2 -----> CO2 + H2O
Mass of CO2 = 23.1g
Mass of H2O = 10.6g
Calculate by mass of the compounds
For Carbon C, divide by molecular weight of CO2 and multiply with Carbon
molecular weight. So C in grams = 23.1 x (12.01 / 44.01) = 6.3 g C
For Hydrogen H, divide by molecular weight of H2O and multiply with Hydrogen molecular weight. So H in grams = 10.6 x (2.01 / 18.01) = 0.53 g C
= 1.18 of H
Calculate the moles for C and H
6.3 grams of C x (1 mole/12.01 g C) = 0.524 moles of C
1.18 grams of H x (1 mole/1.008 g H) = 1.17 moles of H
Divides by both mole entities with smallest
C = 0.524 / 0.524 = 1 x 4 = 4
H = 1.17 / 0.524 = 2.23 x 4 = 10
The empirical formula is C4H10.
Answer:
\large \boxed{\textbf{609 kJ}}
Explanation:
The formula for the heat absorbed is
q = mCΔT
Data:
m = 2.07 kg
T₁ = 23 °C
T₂ = 191 °C
C = 1.75 J·°C⁻¹g⁻¹
Calculations:
1. Convert kilograms to grams
2.07 kg = 2070 g
2. Calculate ΔT
ΔT = T₂ - T₁ = 191 - 23 = 168 °C
3. Calculate q

The odysseyware answer is the same as his wood manure and food crops
Answer:
45.3°C
Explanation:
Step 1:
Data obtained from the question.
Initial pressure (P1) = 82KPa
Initial temperature (T1) = 26°C
Final pressure (P2) = 87.3KPa.
Final temperature (T2) =.?
Step 2:
Conversion of celsius temperature to Kelvin temperature.
This is illustrated below:
T(K) = T(°C) + 273
Initial temperature (T1) = 26°C
Initial temperature (T1) = 26°C + 273 = 299K.
Step 3:
Determination of the new temperature of the gas. This can be obtained as follow:
P1/T1 = P2/T2
82/299 = 87.3/T2
Cross multiply to express in linear form
82 x T2 = 299 x 87.3
Divide both side by 82
T2 = (299 x 87.3) /82
T2 = 318.3K
Step 4:
Conversion of 318.3K to celsius temperature. This is illustrated below:
T(°C) = T(K) – 273
T(K) = 318.3K
T(°C) = 318.3 – 273
T(°C) = 45.3°C.
Therefore, the new temperature of the gas in th tire is 45.3°C