Answer:
118.776 mmHg
Explanation:
The equation of the reaction is;
C4H10(g) + 13/2 O2(g) ------> 4CO2(g) + 5H20(g)
Now the mole ratio according to the balanced reaction equation is;
1 : 6.5 : 4 : 5
Hence, the total number of moles present = 1 + 6.5 + 4 + 5 = 16.5 moles
Mole fraction of water vapour = 5/16.5 = 0.303
We also know that;
Partial pressure= mole fraction * total pressure
Partial pressure of H20(g) = 0.303 * 392 mmHg = 118.776 mmHg
Ozone which is present in the stratospheric region of atmosphere is helpful for preventing harmful UV rays from reaching the surface of earth. Due to human activity, several compounds (specifically chlorofluorocarbons) are released in atmosphere. Due to inherent chemical stability of these compounds, the remain stable in lower region of atmosphere and slowly diffuse into stratosphere. On reaching the stratosphere, these compounds reacts with ozone and thereby depletes the effective concentration of ozone present in atmosphere. Hence, <span>the Montreal Protocol was signed in 1987 by major countries of the world. This aim of this protocol was to protect the stratospheric ozone layer by phasing out the production and consumption of ozone-depleting substances.</span>
Energy is required to change the phase of a substance, such as the energy to break the bonds between molecules in a block of ice so it may melt.
During a phase change energy my be added or subtracted from a system, but the temperature will not change. The temperature will change only when the phase change has completed. No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings. Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart so that the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature.
Answer:
Tamoxifen is an irreversible, competitive inhibitor.
Explanation:
In order to binds to the active site of the estrogen receptor protein, tamoxifen have to compete with the other chemical compound, and inhibits the estrogen release, so it is a competitive inhibitor. Then, you said that when tamoxifen binds to the receptor, the protein is permanently deactivated, so it is also irreversible.