Answer:
B
Explanation:
I hope it helps you good luck
Answer:
We need 78.9 mL of the 19.0 M NaOH solution
Explanation:
Step 1: Data given
Molarity of the original NaOH solution = 19.0 M
Molarity of the NaOH solution we want to prepare = 3.0 M
Volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
Step 2: Calculate volume of the 19.0 M NaOH solution needed
C1*V1 = C2*V2
⇒with C1 = the concentration of the original NaOH solution = 19.0 M
⇒with V1 = the volume of the original NaOH solution = TO BE DETERMINED
⇒with C2 = the concentration of the NaOH solution we want to prepare = 3.0 M
⇒with V2 = the volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
19.0 M * V2 = 3.0 M * 0.500 L
V2 = (3.0 M * 0.500L) / 19.0 M
V2 = 0.0789 L
We need 0.0789 L
This is 0.0789 * 10^3 mL = 78.9 mL
We need 78.9 mL of the 19.0 M NaOH solution
Answer:
215 amu
Explanation:
In the reactants:
There is 1 iron atom, 3 chlorine atoms, 6 hydrogen atoms and 3 oxygen atoms:
- Fe: 56 × 1 = 56
- Cl: 35 × 3 = 105
- H: 1 × 6 = 6
- O: 16 × 3 = 48
56 + 105 + 6 + 48 = 215 amu
Hope this helps!
The answer is: the distance between two nuclei is 2.35×10⁻¹⁰ m.
r(Na⁺) = 1.16×10⁻¹⁰ m; radius of sodium cation.
r(F⁻) = 1.9×10⁻¹⁰ m; radius of fluoride anion.
d(NaF) = r(Na⁺) + r(F⁻).
d(NaF) = 1.16×10⁻¹⁰ m + 1.9×10⁻¹⁰ m.
d(NaF) = 2.35×10⁻¹⁰ m; distance between two nuclei.
The sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice.