Solution :
A cell that is concentrated is constructed by the same half reaction for the anode as well as he cathode.
We know,
In a standard cell,
the reduction half cell reaction is :

The oxidation half ell reaction :

Thus the complete reaction of the cell is :

cell = 
S + O2 → SO2
<span>z / (32.0655 g S/mol) x (1 mol SO2 / 1 mol S) x (64.0638 g SO2/mol) = (1.9979 z) g SO2 </span>
<span>C + O2 → CO2 </span>
<span>(9.0-z) / (12.01078 g C/mol) x (1 mol CO2 / 1 mol C) x (44.00964 g CO2/mol) = (32.9776 - 3.66418 z) g CO2 </span>
<span>Add the two masses of SO2 and CO2 and set them equal to the amount given in the problem: </span>
<span>(1.9979 z) + (32.9776 - 3.66418 z) = 27.9 </span>
<span>Solve for z algebraically: </span>
<span>z = 3.0 g S</span>
3 ethyl, 4 methylheptane. The compound is named by first identifying the longest carbon chain in the structure. in this case the chain has seven carbon atoms thus the prefix hept-.
Next you identify the substituent groups attached to the long carbon chain and name them from the lowest value of the integer assigned to the carbon atoms from either side. From the right, the ethyl group is attached to carbon number 3 while from the left, the methyl group is attached to carbon number 4. We therefore start with the right and name the attached groups first, including the carbon atoms to which they are attached.
Then we also take into consideration the highest number of bonds between the carbon atoms which is one from the question. Thus the suffix -ane is added if a maximum of one bond, -ene,if two bonds and -yne if three bonds.
Answer:
The addition of sulfate ions shifts equilibrium to the left.
Explanation:
Hello!
In this case, according to the following ionization of strontium sulfate:

It is evidenced that when sodium sulfate is added, sulfate,
is actually added in to the solution, which causes the equilibrium to shift leftwards according to the Le Ch athelier's principle. Thus, the answer in this case would be:
The addition of sulfate ions shifts equilibrium to the left.
Best regards!