Answer:
As 28m/s = 28m/s
Explanation:
r = the radius of the curve
m = the mass of the car
μ = the coefficient of kinetic friction
N = normal reaction
When rounding the curve, the centripetal acceleration is

therefore



As 28m/s = 28m/s
Answer:
g' = 10.12m/s^2
Explanation:
In order to calculate the acceleration due to gravity at the top of the mountain, you first calculate the length of the pendulum, by using the information about the period at the sea level.
You use the following formula:
(1)
l: length of the pendulum = ?
g: acceleration due to gravity at sea level = 9.79m/s^2
T: period of the pendulum at sea level = 1.2s
You solve for l in the equation (1):

Next, you use the information about the length of the pendulum and the period at the top of the mountain, to calculate the acceleration due to gravity in such a place:

g': acceleration due to gravity at the top of the mountain
T': new period of the pendulum

The acceleration due to gravity at the top of the mountain is 10.12m/s^2
Winds are named based on which compass direction the wind is blowing. For example some common ones are NE or N or SE or SW. NE stands for Northeast, N for North, SE for South East and SW for Southwest.
Answer:
Rubber is an insulator.
Explanation:
Rubber is an insulator. Electricity will always travel "the path of least resistance." Rubber has a very high resistance, so electricity will go somewhere else to find ground.
Answer:
A larger impulse. A 1-kg ball has twice as much speed as a 10-kg ball.
Explanation: