Answer:
2100 J
Explanation:
Parameters given:
Force acting on the object, F = 420 N
Distance moved by object, d = 5m
The change in kinetic energy of an object is equal to the work done by a force acting on the object:
W = F * d
∆KE = F * d
∆KE = 420 * 5
∆KE = 2100 J
Answer:
generators
Explanation:
the machine which turns in a power station
Answer:
v=v0 - gt
Explanation:
The equation for velocity is
v=v0 - gt
where v0=14m/s, g=10m/s^2.
in 1 second:
v=14-10=4m/s
it is positive so direction is upwards
in 2 seconds:
v=14-20=-6m/s
it is negative so direction is downwards
Answer:
ΔE = 1.031 eV
Explanation:
For this exercise let's calculate the energy of the photons using Planck's equation
E = h f
wavelength and frequency are related
c = λ f
f = c /λ
let's substitute
E = h c /λ
let's calculate
E = 6.63 10⁻³⁴ 3 10⁸/1064 10⁻⁹
E = 1.869 10⁻¹⁹ J
let's reduce to eV
E = 1.869 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
E = 1.168 eV
therefore the electron affinity is
ΔE = E - 0.137
ΔE = 1.168 - 0.137
ΔE = 1.031 eV
Answer:
The average acceleration is 16.6 m/s² ⇒ 1st answer
Explanation:
A rocket achieves a lift-off velocity of 500.0 m/s from rest in
30.0 seconds
The given is:
→ The initial velocity = 0
→ The final velocity = 500 meters per seconds
→ The time is 30 seconds
Acceleration is the rate of change of velocity of the rocket
→ 
where a is the acceleration, v is the final velocity, u is the initial velocity
and t is the time
→ u = 0 , v = 500 m/s , t = 30 s
Substitute these values in the rule
→
m/s²
<em>The average acceleration is 16.6 m/s²</em>