1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lianna [129]
3 years ago
8

The less surface area of gasoline exposed to the air, the faster a given amount will burn. True of False

Engineering
1 answer:
romanna [79]3 years ago
4 0

Answer:

true

Explanation:

it depends on how fast the car goes because the gas burns faster or slower depending on the speed you go or drive. if your drive 50 MPH, the gas will burn slowly. if your drive 45 MPH, the gas will burn faster if you go slow too much. if you press the glass button and hold it for 5 minutes, the more you hold the gas for too long, the more the gas will burn inside the gas engine. go look at your car or your parents car and see how it goes and that will help.

You might be interested in
For some transformation having kinetics that obey the Avrami equation (Equation 10.17), the parameter n is known to have a value
OleMash [197]

Answer:

t = 25.10 sec

Explanation:

we know that Avrami equation

Y = 1 - e^{-kt^n}

here Y is percentage of completion  of reaction = 50%

t  is duration of reaction = 146 sec

so,

0.50 = 1 - e^{-k^146^2.1}

0.50 = e^{-k306.6}

taking natural log on both side

ln(0.5) = -k(306.6)

k = 2.26\times 10^{-3}

for 86 % completion

0.86 = 1 - e^{-2.26\times 10^{-3} \times t^{2.1}}

e^{-2.26\times 10^{-3} \times t^{2.1}} = 0.14

-2.26\times 10^{-3} \times t^{2.1} = ln(0.14)

t^{2.1} = 869.96

t = 25.10 sec

5 0
3 years ago
The most important element of green construction is that it is a(n) __________ approach to building. *
madam [21]
Environmentally friendly


Since it focuses on are sustainable and efficient with and are made with the future in mind.
5 0
3 years ago
What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 1.9 × 10
Fiesta28 [93]

Answer:

Recall the formula for the maximum stress, σₐ = 2σ₀ *√ (α/ρₓ)

where

σ₀ = tensile stress = 140 MPa = 1.40x 10⁸Pa

α = crack length = 3.8 × 10–2 mm = 3.8 x 10⁻⁵m

ρₓ = radius of curvature = 1.9 × 10⁻⁴mm = 1.9 × 10⁻⁷m

Substituting these values into the formula, we can calculate the max stress as

 ====== 2 x 1.40x 10⁸ x √(3.8 x 10⁻⁵/1.9 × 10⁻⁷)

σₐ  = 24.4MPa

6 0
3 years ago
For each of the following combinations of parameters, determine if the material is a low-loss dielectric, a quasi-conductor, or
Alborosie

Answer:

Glass: Low-Loss dielectric

  α = 8.42*10^-11 Np/m

  β = 468.3 rad/m

  λ = 1.34 cm

  up = 1.34*10^8 m/s

  ηc = 168.5 Ω

Tissue: Quasi-Conductor

  α = 9.75 Np/m

  β = 12.16 rad/m

  λ = 51.69 cm

  up = 0.52*10^8 m/s

  ηc = 39.54 + j 31.72 Ω        

Wood: Good conductor

  α = 6.3*10^-4 Np/m

  β = 6.3*10^-4 Np/m

  λ = 10 km

  up = 0.1*10^8 m/s

  ηc = 6.28*( 1 + j )

Explanation:

Given:

Glass with µr = 1, εr = 5, and σ = 10−12 S/m at 10 GHz

Animal tissue with µr = 1, εr = 12, and σ = 0.3 S/m at 100 MHz.

Wood with µr = 1, εr = 3, and σ = 10−4 S/m at 1 kHz

Find:

Determine if  the material is a low-loss dielectric, a quasi-conductor, or a good conductor, and then  calculate α, β, λ, up, and ηc:

Solution:

- We need to determine the loss tangent to determine category of the medium as follows:

                                σ / w*εr*εo

Where, w is the angular speed of wave

            εo is the permittivity of free space = 10^-9 / 36*pi

- Now we classify as follows:

    Glass = \frac{10^-^1^2 }{2*\pi * 10*10^9 * \frac{5*10^-^9}{36\pi } } = 3.6*10^-^1^3\\\\Tissue = \frac{0.3 }{2*\pi * 100*10^6 * \frac{12*10^-^9}{36\pi } } = 4.5\\\\Wood = \frac{10^-^4 }{2*\pi * 1*10^3 * \frac{3*10^-^9}{36\pi } } = 600\\  

- For σ / w*εr*εo < 0.01 --- Low-Loss dielectric and σ / w*εr*εo > 100 --- Good conducting material.

    Glass: Low-Loss dielectric

    Tissue: Quasi-Conductor

    Wood: Good conductor

- Now we will use categorized material base equations from Table 17-1 as follows:

     Glass: Low-Loss dielectric

          α = (σ / 2)*sqrt(u / εr*εo) = (10^-12 / 2)*sqrt( 4*pi*10^-7/5*8.85*10^-12)

          α = 8.42*10^-11 Np/m

          β = w*sqrt (u*εr*εo) = 2pi*10^10*sqrt (4*pi*10^-7*5*8.85*10^-12)

          β = 468.3 rad/m

          λ = 2*pi / β = 2*pi / 468.3

          λ = 1.34 cm

          up = λ*f = 0.0134*10^10

          up = 1.34*10^8 m/s

          ηc = sqrt ( u / εr*εo ) = sqrt( 4*pi*10^-7/12*8.85*10^-12)

          ηc = 168.5 Ω

     Tissue: Quasi-Conductor

          α = (σ / 2)*sqrt(u / εr*εo) = (0.3 / 2)*sqrt( 4*pi*10^-7/12*8.85*10^-12)

          α = 9.75 Np/m

          β = w*sqrt (u*εr*εo) = 2pi*100*10^6*sqrt (4*pi*10^-7*12*8.85*10^-12)

          β = 12.16 rad/m

          λ = 2*pi / β = 2*pi / 12.16

          λ = 51.69 cm

          up = λ*f = 0.5169*100*10^6

          up = 0.52*10^8 m/s

          ηc = sqrt ( u / εr*εo )*( 1 - j (σ / w*εr*εo))^-0.5

          ηc = sqrt (4*pi*10^-7*12*8.85*10^-12)*( 1 - j 4.5)^-0.5

          ηc = 39.54 + j 31.72 Ω

     Wood: Good conductor

          α = sqrt (pi*f*σ u) = sqrt( pi* 10^3 *4*pi* 10^-7 * 10^-4 )

          β = α = 6.3*10^-4 Np/m

          λ = 2*pi / β = 2*pi / 6.3*10^-4

          λ = 10 km

          up = λ*f = 10,000*1*10^3

          up = 0.1*10^8 m/s

          ηc = α*( 1 + j ) / б = 6.3*10^-4*( 1 + j ) / 10^-4

          ηc = 6.28*( 1 + j )

         

           

         

8 0
3 years ago
A world class runner can run long distances at a pace of 15 km/hour. That runner expends 800 kilocalories of energy per hour. a)
maks197457 [2]

Answer: a) 1.05kW b) 3.78MJ c) 5.3 bars

Explanation :

A)

Conversions give 900 kcal as 900000 x 4.2 J/cal {4.2 J/cal is the standard factor}

= 3780kJ

And 1 hour = 3600s

Therefore, Power in watts = 3780/3600 = 1.05kW = 1050W

B)

At 15km/hour a 15km run takes 1 hour.

1 hour is 3600s and the runner burns 1050 joule per second.

Energy used in 1 hour = 3600 x 1050 J/s

= 3780000 J or 3.78MJ

C)

1 mile = 1.61km so 13.1 mile is 13.1 x 1.61 = 21.1km

15km needs 3.78 MJ of energy therefore 21.1km needs 3.78 x 21.1/15 = 5.32MJ =5320 kJ

Finally,

1 Milky Way = 240000 calories = 4.2 x 240000 J = 1008000J or 1008kJ

This means that the runner needs 5320/1008 = 5.3 bars

7 0
3 years ago
Other questions:
  • 5. Identify the pros and cons of<br> manufactured siding.
    12·1 answer
  • The mechanical advantage of a screw is always ____________________ than/to 1. Question 5 options: less, greater, equal, none of
    7·1 answer
  • A 1200-kg car moving at 20 km/h is accelerated
    5·1 answer
  • What is the basic formula for actual mechanical advantage?
    12·1 answer
  • A person walks into a refrigerated warehouse with head uncovered. Model the head as a 25- cm diameter sphere at 35°C with a surf
    12·1 answer
  • A continuous function y = ƒ(x) is known to be negative at x = 0 and positive at x = 1. Why does the equation ƒ(x) = 0 have at le
    14·1 answer
  • AA
    10·1 answer
  • Analyze the example of this band saw wheel and axle. The diameter of the wheel is 14 inches. The diameter of the axle that drive
    9·1 answer
  • A ____ is either in the pressure reducer or in the downstream side of the system to ensure that the control air pressure does no
    15·1 answer
  • 1. What did observations between 1912 and 1917 show?_____
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!