Answer: downward velocity = 6.9×10^-4 cm/s
Explanation: Given that the
Diameter of the smoke = 0.05 mm = 0.05/1000 m = 5 × 10^-5 m
Where radius r = 2.5 × 10^-5 m
Density = 1200 kg/m^3
Area of a sphere = 4πr^2
A = 4 × π× (2.5 × 10^-5)^2
A = 7.8 × 10^-9 m^2
Volume V = 4/3πr^3
V = 4/3 × π × (2.5 × 10^-5)^3
V = 6.5 × 10^-14 m^3
Since density = mass/ volume
Make mass the subject of formula
Mass = density × volume
Mass = 1200 × 6.5 × 10^-14
Mass M = 7.9 × 10^-11 kg
Using the formula
V = sqrt( 2Mg/ pCA)
Where
g = 9.81 m/s^2
M = mass = 7.9 × 10^-11 kg
p = density = 1200 kg/m3
C = drag coefficient = 24
A = area = 7.8 × 10^-9m^2
V = terminal velocity
Substitute all the parameters into the formula
V = sqrt[( 2 × 7.9×10^-11 × 9.8)/(1200 × 24 × 7.8×10^-9)]
V = sqrt[ 1.54 × 10^-9/2.25×10-4]
V = 6.9×10^-6 m/s
V = 6.9 × 10^-4 cm/s
Answer:
b. Discharging; anode; cathode
Explanation:
When discharging , it means the battery is producing a flow electric current, the lithium ions are released from the anode to the cathode which generates the flow of electrons from one side to another. When charging Lithium ions are released by the cathode and received by the anode.
Answer:
The options a)- A blast furnace is used and d)-Coke is used to produce the heat are FALSE.
Explanation:
Aluminium is a chemical element and the most abundant metal present in the Earth's crust. An aluminium ore is called bauxite. Aluminium is extracted from its ore by the process of electrolysis, called the Hall–Héroult process. The extraction of aluminium is an expensive process as it requires large amount of electricity. The bauxite is purified to produce aluminium oxide. Then, aluminium is extracted from the aluminium oxide.
<u>Therefore, the refining of aluminum from its ore does not involve the use of a blast furnace and coke to produce heat.</u>
<u />
Answer:
Feedforward basically configured and used mainly to avoid errors in a control system entering or disrupting a control loop
Explanation:
Feedforward basically configured and used mainly to avoid errors in a control system entering or disrupting a control loop. Although Feedforward control seems to be a very attractive idea, it imposes a high responsibility on both the system developer and the operator to examine and consider mathematically the effect of disruptions on the process concerned.
example of feedforward is
Shower
which consist of following control points
Hear toilet flush (measurement)
Customize water to compensate
feedback refers to that point when water turns hot before the configuration changes
Answer:
ananswer my question please