1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
2 years ago
9

How much metal can be removed from a cracked drum to restore surface

Engineering
2 answers:
Alisiya [41]2 years ago
7 0

Answer:sc

Explanation:

sc

adelina 88 [10]2 years ago
4 0
There is a turn to limit stamped on it but as others have said, if it is cracked, you need to replace.
You might be interested in
A square loop of wire surrounds a solenoid. The side of the square is 0.1 m, while the radius of the solenoid is 0.025 m. The sq
Semmy [17]

Answer:

I=9.6×e^{-8}  A

Explanation:

The magnetic field inside the solenoid.

B=I*500*muy0/0.3=2.1×e ^-3×I.

so the total flux go through the square loop.

B×π×r^2=I×2.1×e^-3π×0.025^2

=4.11×e^-6×I

we have that

(flux)'= -U

so differentiating flux we get

so the inducted emf in the loop.

U=4.11×e^{-6}×dI/dt=4.11×e^-6×0.7=2.9×e^-6 (V)

so, I=2.9×e^{-6}÷30

I=9.6×e^{-8}  A

6 0
3 years ago
Discuss the applications of numerical weather forecasting​
olchik [2.2K]

Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.
3 0
3 years ago
A 20.0 µF capacitor is charged to a potential difference of 800 V. The terminals of the charged capacitor are then connected to
Sergeu [11.5K]

Answer:

a) Q_initial = 16 * 10^-3 C

b) V_1 = V_2 =  (16/3) * 10^2 V

c)  E = 64/15 J

d)  dE = 32/15 J of decrease

Explanation:

Given:

- Capacitor 1, C_1 = 20.0 uF

- Capacitor 2, C_2 = 10.0 uF

- Charged with P.d V = 800 V

Find:

a) the original charge of the system,

(b) the final potential difference across each capacitor

(c) the final energy of the system

(d) the decrease in energy when the capacitors are connected.

Solution:

a)

- The initial charge in the circuit is the one carried by the first charged capacitor.

                           Q_initial = C_1*V

                           Q_initial = 20*10^-6 * 800

                           Q_initial = 16 * 10^-3 C

b)

- After charging the other capacitor, we know that the total charge is conserved among two capacitor:

                          Q_initial = Q_1 + Q_2

- We also know that potential difference across two capacitor is also same.

                          V_1 = V_2 = Q_1 / C_1 = Q_2 / C_2

- Using the two equations and solve for charge Q_2:

                          Q_2 = Q_1*C_2/C_1

                          Q_2 = Q_1*10/20 = 0.5*Q_1

- using conservation of charge:

                          Q_initial = 1.5*Q_1

                          Q_1 = 16*10^-3 / 1.5 = 10.67*10^-3 C

- Hence the Voltage across each capacitor is:

                          V_2 = V_1 = Q_1 / C_1  

                                            = 10.67*10^-3 / 20*10^-6

                                            = (16/3) * 10^2 V

c)

- The energy in the system is:

                          E = 0.5*C_eq*V^2

Where, C_eq is the equivalent capacitance of paralle circuit.

                           E = 0.5*(20+10)*10^-6 *((16/3) * 10^2)^2

                          E = 64/15 J

d)

- The decrease in energy of the capacitors is:

                           dE = E_initial - E_final

Where, E_initial is due to charging of the C_1 only:

                          dE = 0.5*10^-6*20*800^2 - (64/15)

                          dE = 32/5 - 64/15 = 32/15 J

5 0
3 years ago
The speed of sound in a fluid can be calculated using the following equation:
wlad13 [49]

Answer:

Jesus is always the answer

4 0
2 years ago
In poor weather, you should _______ your following distance.
jasenka [17]

In poor weather, you should <u>double</u> your following distance.

6 0
3 years ago
Other questions:
  • Plz answer all of these questions!
    15·1 answer
  • A 40 mph wind is blowing past your house and speeds up as it flows up and over the roof. If the elevation effects are negligible
    14·1 answer
  • Python lists are commonly used to store data types. Lists are a collection of information typically called a container. Think of
    5·1 answer
  • 10. Power = (Distance * Force) / Time
    7·1 answer
  • What have you learned from the previous lesson? Let's try to check your prior knowledge
    9·1 answer
  • Pleaseeee help me with this!!
    10·1 answer
  • Is the pure fission bomb a nuclear bomb?
    5·1 answer
  • In surveying , supposing we can not pull the tape because it is passing through a shallow river. What will i do to obtain an acc
    11·1 answer
  • Airbags may deploy in the<br> of the passenger or<br> driver, or from the<br> of the vehicle.
    6·1 answer
  • Phosphorus and nitrogen are included in which category of water pollutants?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!