Answer
For this we use ideal gas equation which is:
P1V1 = P2V2
P1 = 1.10 atm
V1 = 326 ml
P2 = 1.90
V2 = ?
By rearranging the ideal gas equation:
V2 = P1V1 ÷ P2
V2 = 1.10 × 326 ÷1.90
V2 = 358.6 ÷ 1.90
V2 = 188.7 ml
The volume of oxygen at STP required would be 252.0 mL.
<h3>Stoichiometic problem</h3>
The equation for the complete combustion of C2H2 is as below:

The mole ratio of C2H2 to O2 is 2:5.
1 mole of a gas at STP is 22.4 L.
At STP, 100.50 mL of C2H2 will be:
100.50 x 1/22400 = 0.0045 mole
Equivalent mole of O2 according to the balanced equation = 5/2 x 0.0045 = 0.01125 moles
0.01125 moles of O2 at STP = 0.01125 x 22400 = 252.0 mL
Thus, 252.0 mL of O2 gas will be required at STP.
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1
Answer:
Identify the "given" information and what the problem is asking you to "find."
Given : Cl2O7
Find: % Composition (% Cl and %O)
List other known quantities.
Mass of Cl in 1 mol Cl2O7 , 2 Cl : 2 x 35.45 g = 70.90 g
Mass of O in 1 mol Cl2O7 , 7 O: 7 x 16.00 g = 112.00 g
Molar mass of Cl2O7 = 182.90 g/mol
Answer:
OPTION B
Explanation:
Nuclear "fission" is the breakdown of the nucleus of a radioactive element into two or more nuclei accompanied by the release of energy. I guess that pretty much explains it.
Answer: 22 neutrons
Explanation: 40 is the mass number = atomic mass = total number of protons and neutrons in atomic nucleus
18 is the number of protons in the nucleus of this atom
Then 40 - 18 = 22 neutrons
and this is Argon