<u>Given:</u>
Mass of pure iron (Fe) = 3.4 g
<u>To determine:</u>
Mass of HBr needed to dissolve the above iron
<u>Explanation:</u>
Reaction between HBr and Fe is
Fe + 2HBr → FeBr₂ + H₂
Based on the reaction stoichiometry-
1 mole of Fe reacts with 2 moles of HBr
# moles of Fe = mass of Fe/atomic mass of Fe = 3.4/56 g.mol⁻¹ = 0.0607 moles
Therefore # moles of HBr = 2*0.0607 = 0.1214 moles
Molar mass of HBr = 81 g/mole
Mass of HBr = 0.1214 moles * 81 g/mole = 9.83 g
Ans: Mass of HBR required is 9.83 g
Answer:
63. 55 amu
Explanation:
Copper is known to exist in two different isotopes which are Cu-63 and Cu-65.
Cu-63 has an atomic mass of 62.93 amu and it has an abundance of 69.15%.
Similarly,
Cu-65 has an atomic mass of 64.93 amu and it has an abundance of 30.85%
Therefore, using the weighted average mass method, the atomic mass of copper is:
Atomic mass of copper = (0.6915*62.93) amu + (0.3085*64.93) amu = 43.52 amu + 20.03 amu = 63.55 amu
Thus, the atomic mass of copper (express in two decimal places) is 63.55 amu
Answer:
D) is the answer please thanks
Answer: The bond between boron and hydrogen in boron trihydride is covalent bond.
Explanation:
The type of bonding between the atoms forming a compound is determined by using the electronegativity difference between the atoms. According to the pauling's electronegativity rule:
- If
, then the bond is non-polar. - If
, then the bond will be covalent. - If
, then the bond will be ionic.
We are given:
Electronegativity for boron = 2.0
Electronegativity for hydrogen = 2.1

As,
is less than 1.7 and not equal to 0. Hence, the bond between boron and hydrogen is covalent bond.