Explanation:
The given data is as follows.
Weight of solute = 75.8 g, Molecular weight of solute (toulene) = 92.13 g/mol, volume = 200 ml
- Therefore, molarity of toulene is calculated as follows.
Molarity = 
= 
= 4.11 M
Hence, molarity of toulene is 4.11 M.
- As molality is the number of moles of solute present in kg of solvent.
So, we will calculate the molality of toulene as follows.
Molality = 
= 
= 8.6 m
Hence, molality of given toulene solution is 8.6 m.
- Now, calculate the number of moles of toulene as follows.
No. of moles = 
= 
= 0.8227 mol
Now, no. of moles of benzene will be as follows.
No. of moles = 
= 
= 1.2239 mol
Hence, the mole fraction of toulene is as follows.
Mole fraction = 
= 
= 0.402
Hence, mole fraction of toulene is 0.402.
- As density of given solution is 0.857
so, we will calculate the mass of solution as follows.
Density = 
0.857
=
(As 1
= 1 g)
mass = 171.4 g
Therefore, calculate the mass percent of toulene as follows.
Mass % = 
= 
= 44.22%
Therefore, mass percent of toulene is 44.22%.
Answer:
none of the above
Explanation:
A system is said to have attained dynamic equilibrium when the forward and reverse reactions proceed at the same rate. That is;
Rate of forward reaction = Rate of reverse reaction
The implication of this is that the concentrations of reactants and products remain constant when dynamic equilibrium is attained in a system. This does not mean that the reactant and product concentrations become equal; it rather means that their concentrations do not significantly change once dynamic equilibrium has been attained.
Answer:
The Nucleus...
it perform many activities and stores DNA in a cell.
not be changed to balance an equationSubscripts are part of the chemical formula for reactants or products and can
Changing a subscript changes the substance represented by the formula