The momentum of the mass expelled in the opposite direction ... the rocket-engine exhaust, or the ionized matter expelled from an ion drive.
THAT's why every propulsion engine has outlet nozzles designed with super-high-intensity math, to achieve the highest possible velocity for the mass that gets shot out the back ... so that it will carry the maximum possible momentum.
Answer:
Binding Energy = 2.24 eV
Explanation:
First, we need to find the energy of the photon of light:
E = hc/λ
where,
E = Energy of Photon = ?
h = Plank's Constant = 6.626 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light = 400 nm = 4 x 10⁻⁷ m
Therefore,
E = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(4 x 10⁻⁷ m)
E = (4.97 x 10⁻¹⁹ J)(1 eV/1.6 x 10⁻¹⁹ J)
E = 3.1 eV
Now, from Einstein's Photoelectric Equation:
E = Binding Energy + Kinetic Energy
Binding Energy = E - Kinetic Energy
Binding Energy = 3.1 eV - 0.86 eV
<u>Binding Energy = 2.24 eV</u>
Much of the precipitation in large bodies of water occurs at the surface. The ocean loses about 37000 km cubed considering evaporation and precipitation.
Explanation:
Speed is distance over time.
500 km / 2 hr = 250 km/hr
Velocity is speed and direction.
250 km/hr north