If you measured all the energy related to motion and all the stored
energy in the particles of a substance, you would be measuring the thermal energy of the particles. If
there is movement of the particles, they are also releasing energy in the form
of heat.
Answer:
Isotopes can both be the same element but have a different number of electrons
Explanation: not sure if more was supposed to be there, but i tried
Answer:
- Decreasing the resistance
- Using a shorter length
- Using a smaller area wire
Explanation:
Formula for conductance in wires is;
G = 1/R
Where;
G is conductance
R is resistance
This means that increasing the resistance leads to a larger denominator and thus a smaller conductance but to decrease the denominator means larger conductance.
Thus, to increase the conductance, we have to decrease the resistance.
Resistance here has a formula of;
R = ρL/A
Where;
ρ is resistivity
L is length of wire
A is area
Thus, to decrease the resistance, we will have to use a shorter length and smaller area of wire.
Answer:
(A) 140 j/sec (b) 1.26 K
Explanation:
We have given the heat heat flowing into the refrigerator = 40 J/sec
Work done = 40 W
(a) So the heat discharged from the refrigerator 
(b) Total heat absorbed =140 j/sec 
Let the temperature be 
Heat absorbed per hour =504000 ![[tex]=400\times 10^3\times \Delta T](https://tex.z-dn.net/?f=%5Btex%5D%3D400%5Ctimes%2010%5E3%5Ctimes%20%5CDelta%20T)
So 
Answer:
a. If c = 20 cm, then the mass of the brain is m = 5 g.
b. At c = 20 cm, the brain's mass is increasing at a rate of 15.75 g/cm.
Explanation:
From the equation

we have
a. for c = 20 cm

then the mass is m(20) = 5 g.
b. In order to find the rate of change, first we derivate

Evaluated at c = 20 cm, we have

So, at c = 20 cm, the mass of the brain is increasing at a rate of 15.75 g/cm.