Explanation:
Let us assume that total mass of the solution is 100 g. And, as it is given that acetic acid solution is 12% by mass which means that mass of acetic acid is 12 g and 88 g is the water.
Now, calculate the number of moles of acetic acid as its molar mass is 60 g/mol.
No. of moles =
= 
= 0.2 mol
Molarity of acetic acid is calculated as follows.
Density = 
1 g/ml = 
volume = 100 ml
Hence, molarity = 
= 
= 2 mol/l
As reaction equation for the given reaction is as follows.

So, moles of NaOH = moles of acetic acid
Let us suppose that moles of NaOH are "x".
(as 1 L = 1000 ml)
x = 20 L
Thus, we can conclude that volume of NaOH required is 20 ml.
The answer is: C. 0.00427 m.
A) 1 km = 1000000 mm.
d = 0.0000427 km · 1000000 mm/km.
d = 47.7 mm.
B) 1 hm = 100000 mm.
d = 0.000427 hm · 100000 mm/hm.
d = 42.7 mm.
C) 1 m = 1000 mm.
d = 0.00427 m · 1000 mm/m.
d = 4.27 mm.
D) 1 cm = 10 mm.
d = 4.27 cm · 10 mm/cm.
d = 42.7 mm.
Millimeter (abbreviated: mm, a thousandth part of metar) is an unit of distance in the metric system.
Answer:
Assume that 100 grams of C2H4 is present. This means that there are 85.7 grams of carbon and 14.3 grams of hydrogen.
Convert these weights to moles of each element:
85.7 grams carbon/12 grams per mole = 7 moles of carbon.
14.3 grams hydrogen/1 gram per mole = 14 moles of hydrogen.
Divide by the lowest number of moles to obtain one mole of carbon and two moles of hydrogen.
Since we know that there cannot be a stable CH2 molecule, multiply by two and you have C2H4 which is ethylene - a known molecule.
The secret is to convert the percentages to moles and find the ration of the constituents.
Answer:
156.4g K
Explanation:
I'm not sure if it is correct but I think it should be this
What do we know so far?: 2K + 1Cl2 -> 2KCl, 2 mol of Cl2
What are we looking for?: #g of K
What is the ratio of K to Cl2?: 2:1
Set up equation: 2molCl2 x 
Cancel unwanted units: 2 x 
Answer we got: 2 x 2mol K = 4mol K
Converting moles to grams: 4 x 39.1 (molar mass of K) = 156.4g K
Answer:
When the transfer of electrons occurs, an electrostatic attraction between the two ions of opposite charge takes place and an ionic bond is formed. A salt such as sodium chloride (NaCl) is a good example of a molecule with ionic bonding