2 C₃H₇OH (l) + 9 O₂ (g) → 6 CO₂ (g) + 8 H₂O (g)
Explanation:
To balance the chemical equation the number of atoms of each element entering the reaction have to be equal to the number of atoms of each element leaving the reaction, in order to conserve the mass.
Bellow we have the balanced chemical equation of the complete combustion of C₃H₇OH:
C₃H₇OH (l) + (9/2) O₂ (g) → 3 CO₂ (g) + 4 H₂O (g)
to have integer coefficients we multiply the reaction with 2:
2 C₃H₇OH (l) + 9 O₂ (g) → 6 CO₂ (g) + 8 H₂O (g)
where:
(l) - liquid
(g) - gaseous
Learn more about:
combustion reaction
brainly.com/question/9425444
balancing chemical equations
brainly.com/question/13941483
#learnwithBrainly
Answer:
A
Explanation:
Hmm, so we have the following in the diagram
Pt(s)
Cl2(g)
Ag(s)
NaCl(aq)
AgNO3(aq)
Pt 2+, 4+, 6+ Though it states Pt is inert
Cl 2-
Ag 1+
Na 1+
NO3-
Anode definition: the positively charged electrode by which the electrons leave an electrical device.
Electrode definition: a conductor through which electricity enters or leaves an object, substance, or region.
Cations attracted to cathode pick up electrons
Anions attracted to anode release electrodes+
Reduction at Cathode (red cat gain of e)
Oxidation at Anode (ox anode loss of e)
So from the diagram we can see that the charge is being generated through the 2 metal plates.
So the answer is A, the anode material is Pt and the half reaction is 2Cl- = Cl2 + 2e-
Answer:
Carbon is released back into the atmosphere when organisms die, volcanoes erupt, fires blaze, fossil fuels are burned, and through a variety of other mechanisms.Humans play a major role in the carbon cycle through activities such as the burning of fossil fuels or land development.
Answer:
mass of HNO₃ = 0.378 g
Explanation:
Normality = Molarity * number of equivalents
Molarity = Normality/number of equivalents
normality of HNO₃ = 0.30 N, Volume = 20 mL
HNO₃ ionizes in the following way:
HNO₃(aq) ----> H⁺ + NO₃⁻
Therefore, number of equivalents for HNO₃ is 1
molarity of HNO₃ = 0.30/1 =0.30 mol/dm³
Using the formula, molarity = number of moles/volume in liters
number of moles = molarity * volume
Number of moles of HNO₃ = 0.30 mol/dm³ * 20ml * 1 dm³ /1000 mL
number of moles = 0.006 moles
From the formula, mass = number of moles * molar mass
molar mass of HNO₃ = 63.0 g/mol
mass = 0.006 * 63
mass of HNO₃ = 0.378 g
Answer is: a) is has increased.
There are two types of reaction:
1) endothermic reaction (chemical reaction that absorbs more energy than it releases).
For example, the breakdown of ozone is an endothermic process. Ozone has lower energy than molecular oxygen (O₂) and oxygen atom, so ozone need energy to break bond between oxygen atoms.
2) exothermic reaction (chemical reaction that releases more energy than it absorbs).
For example, ΔH(reaction) = -225 kJ/mol; this is exothermic reaction.