Incomplete question as we have not told to find what quantity.The complete question is here
A spherical capacitor contains a charge of 3.50 nC when connected to a potential difference of 210.0 V. Its plates are separated by vacuum and the inner radius of the outer shell is 5.00 cm.calculate: (a) the capacitance; (b) the radius of the inner sphere; (c) the electric field just outside the surface of the inner sphere.
Answer:
(a) 
(b) 
(c)
Explanation:
Given data

For part (a)
The Capacitance given by:

For part (b)
The Capacitance of coordinates is given as

For part (c)
The electric field according to Gauss Law is given by:

Answer:

Explanation:
Given the following data;
Frequency = 4.0 x 10⁹ Hz
Planck's constant, h = 6.626 x 10-34 J·s.
To find the energy of the electromagnetic wave;
Mathematically, the energy of an electromagnetic wave is given by the formula;
E = hf
Where;
E is the energy possessed by a wave.
h represents Planck's constant.
f is the frequency of a wave.
Substituting the values into the formula, we have;


Answer:
C. 110 m/s2
Explanation:
Force = Mass x Acceleration
Since we have the force and the mass, we can rearrange this equation to solve for acceleration by dividing both sides by mass:
Force/Mass = (Mass x Acceleration)/Mass
Acceleration = Force/Mass
Now we just have to plug in our values and calculate!
Acceleration = 48.4/0.44
Acceleration = 110m/s/s
It is option C. 110 m/s2
Hope this helped!
Data Analysis and Conclusion
Explanation:
Given parameters:
Distance = 15miles north = 24140.2m
Initial velocity = 0m/s
Final velocity = 4m/s
Unknown:
Speed, velocity and acceleration = ?
Solution:
The speed is the distance divide by time. It is a scalar quantity and has no directional attribute.
Speed =
The speed of the student is 4m/s
Velocity is the displacement divided by time. It is a vector quantity which specifies the direction and magnitude;
Velocity =
The velocity of the student is 4m/s due north
Acceleration is the change in velocity with time;
To find the acceleration, we use
v² = u² + 2as
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
4² = 0² + 2x a x 24140.2
a =
= 0.00033m/s²