In the beginning, the melting stage they call it.
Answer:
e) Be four times greater
Explanation:
Here we have to use Newton's gravitational law that relates the gravitational force between two objects with their masses (
&
) and the distance between them (
) in the next way:
(2)
Now if distance between asteroids is halved:



Note that
because (1) is F so:

It's four times greater!
To solve this problem we will apply the concepts related to the conservation of momentum. By definition we know that the initial moment must be equivalent to the final moment of the two objects therefore


Here,
Mass of each object
Initial velocity of each object
= Final velocity of each object
Since the initial velocity relative to the metal tank is at rest, that velocity will be zero. And considering that in the end, the speed of the two bodies is the same, the equation would become

Rearranging to find the velocity,

Replacing we have that,


Therefore the velocity of the shark immediately after it swallows the tank is 
Explanation:
m = 19 oz × (28.3 g/1 oz) = 537.7 g
V = 92.8 mL

The date the model was published.
The use of “laws” originated prior to science splitting from natural philosophy. There’s an implicit assumption that God as the creator laid down both moral and natural laws, with the theologian concerned with the former and the natural philosopher concerned with the latter.
“Theory” begins to take hold in the late 1700s and, very roughly speaking, is used to describe more complex models. “Law” eventually became nearly archaic, although still used to describe very pithy models (Amdahl’s Law, Gustafson’s Law).
The word “model” is gradually superseding both of them.
People have tried to come up with hard-and-fast rules to distinguish them, but scientists are unruly beasts, and use whatever language suits them in the moment.