Answer:
t = 3.48 s
Explanation:
The time for the maximum height can be calculated by taking the derivative of height function with respect to time and making it equal to zero:

where,
v₀ = initial speed = 110 ft/s
Therefore,

<u>t = 3.48 s</u>
The answer is D. the way I remember it is they all end with -alism.
Answer:
9m^3
Explanation:
Given data
volume v1= 3m^3
volume v2= ???
Temperature T1= 20.0°C.
Temperature T2= 60.0°C.
Applying the relation for temperature and volume
V1/T1= V2/T2
substitute
3/20= V2/60
3*60= V2*20
180= 20*V2
180/20= V2
V2= 9m^3
Hence the final volume is 9m^3
<h3>Answer;</h3>
<u>It would make the lens stronger. </u>
<h3>Explanation;</h3>
- The focal length is the distance between the optical center or the center of the lens to the focal point of a convex or concave lens.
- The power of the convex lens is lens ability to undertake refraction or bend light. It is given as the reciprocal of focal length.
- Power of the lens = 1/ f; therefore the smaller the focal length the higher the power and the larger the focal length the lower the power.
- Thus; decreasing the focal length of a convex lens makes the lens stronger.
Answer:
0.163 s
Explanation:
Appying,
P = mgh/t................ Equation 1
Where P = power of the motor, m = mass of the suitcase, h = vertical distance, t = time, g = acceleration due to gravity.
make t the subject of the equation,
t = mgh/P................ Equation 2
Given: m = 20 kg, h = 50 cm = 0.5 m, P = 0.6 kW = 600 W
Constant: g = 9.8 m/s²
Substitute these values into equation 2
t = (20×0.5×9.8)/600
t = 0.163 s