Answer:
1.16cm were cut off the end of the second pipe
Explanation:
The fundamental frequency in the first pipe is,
<em><u>Since the speed of sound is not given in the question, we would assume it to be 340m/s</u></em>
f1 = v/4L, where v is the speed of sound and L is the length of the pipe
266 = 340/4L
L = 0.31954 m = 0.32 m
It is given that the second pipe is identical to the first pipe by cutting off a portion of the open end. So, consider L’ be the length that was cut from the first pipe.
<u>So, the length of the second pipe is L – L’</u>
Then, the fundamental frequency in the second pipe is
f2 = v/4(L - L’)
<u>The beat frequency due to the fundamental frequencies of the first and second pipe is</u>
f2 – f1 = 10hz
[v/4(L - L’)] – 266 = 10
[v/4(L – L’)] = 10 + 266
[v/4(L – L’)] = 276
(L - L’) = v/(4 x 276)
(L – L’) = 340/(4 x 276)
(L – L’) = 0.30797
L’ = 0.31954 – 0.30797
L’ = 0.01157 m = 1.157 cm ≅ 1.16cm
Hence, 1.16 cm were cut from the end of the second pipe
Answer:
do you have any pictures or any answers we can choose from?
Explanation:
This is an incomplete question.
Answer:
D
Explanation:
A) is not correct, because the gravitation potential energy will depend on the height the block is located at. It will be calculated with the formula:
U=mgh.
If we take the ground as a zero height reference, then on point 2 the potential energy will be:


While on point 3, the potential energy will be greater.


B) is not the right answer because the kinetic energy will vary with the height the block is located at in the fact that the energy is conserved (this is if we don't take friction into account or air resistance) so in this case:

We already know the potential energy at point 2. We can calculate the kinetic energy at point 3 like this:



So the kinetic energy at point 2 is given by the equation:

so:


As you may see the kinetic energy at point 2 is greater than the kinetic energy at point 3.
C) Is not correct because according to the first law of thermodinamics, energy is not lost, only transformed. So, since we are not taking into account friction or any other kind of loss, then we can say that the amount of mechanical energy at point 1 is exactly the same as the mechanical energy at point 3.
D) Because of what we talked about on part C, this will be the true situation, because the mechanical energy of the block will be the same no matter theh point you measure it at.
Answer:
0.0198 dollars
Explanation:
We first obtain the total energy drawn by the light bulb in kilowatt-hour (kW-hr) using the following relationship;
Energy = power rating x time
Given;
power rating = 60W,
time = 3hrs
Therefore,
Energy consumed = 60W x 3hr
Energy consumed = 180W-hr = 0.18kW-hr
We then multiply this energy in kW-hr by he amount charged per unit kW-hr as follows;
Given that 1kW-hr= 0.11 dollars
0.18kW-hr = 0.18 x 0.11
= 0.0198 dollars