1. Is A. at the poles because thats where the magnetic field is going out then coming back into the earth to produce the magnetic field.
2. Again its A. because the compass needle is attracted to " north " which is magnetic south. It does this because opposites attract.
3. This one would be B. Because if the magnets were being repelled the magnetic field lines would look like there was a line that the field hit and bounced off of it.
4. This answer is A. the magnetite helps them migrate so they know which way is north and which way is south.
5. This answer is A. Because without the domains there wouldn't be poles on the magnetic object. <span />
The statements from both Technicians A and B are correct.
Answer: Option C
<u>Explanation:</u>
A typical MAP sensors comprises with a ceramic or silicon wafers, sealed with an ideal vacuum on one side and a suction manifold on the other. When the engine (motor) vacuum varies, the differential pressure across the board changes the output voltage or frequency to the MAP sensor. So, sensor vacuum to be increased if injection pulse widths increase.
Most pressure sensors operate at 5 volts from a computer and return a signal (voltage or frequency) based on the pressure applied to the sensor (vacuum). When testing the MAP sensor, make sure that the vacuum hose and hose connections are tightly connected to the engine vacuum source. According to this, concluding that the statements from both technicians are correct.
Answer:

Explanation:
<u>Work and Kinetic Energy
</u>
The work an object does due to its motion is equal to the change of its kinetic energy. Being ko and k1 the initial and final kinetic energy respectively and m the mass of the object, then

Since

We have

The truck has a mass of 60,000 kg and is moving at 27 m/s. The runaway truck ramp must stop the truck, so the final speed is 0. Thus



The new frequency of oscillation when the car bounces on its springs is 0.447 Hz
<h3>Frequency of oscillation of spring</h3>
The frequency of oscillation of the spring is given by f = (1/2π)√(k/m) where
- k = spring constant and
- m = mass on spring
Now since k is constant, and f ∝ 1/√m.
So, we have f₂/f₁ = √(m₁/m₂) where
- f₁ = initial frequency of spring = 1.0 Hz,
- m₁ = mass of driver,
- f₂ = final frequency of spring and
- m₂ = mass on spring when driver is joined by 4 friends = 5m₁
So, making f₂ subject of the formula, we have
f₂ = [√(m₁/m₂)]f₁
Substituting the values of the variables into the equation, we have
f₂ = [√(m₁/m₂)]f₁
f₂ = [√(m₁/5m₁)]1.0 Hz
f₂ = [√(1/5)]1.0 Hz
f₂ = 1.0 Hz/√5
f₂ = 1.0 Hz/2.236
f₂ = 0.447 Hz
So, the new frequency of oscillation when the car bounces on its springs is 0.447 Hz
Learn more about frequency of oscillation of spring here:
brainly.com/question/15318845