Moles of Oxygen= 2.8075 moles
<h3>Further explanation</h3>
Given
29.2 grams of acetylene
Required
moles of Oxygen
Solution
Reaction(Combustion of Acetylene) :
2 C₂H₂ (g) + 5 O₂ (g) ⇒ 4CO₂ (g) + 2H₂O (g)
Mol of Acetylene :
= mass : MW Acetylene
= 29.2 g : 26 g/mol
= 1.123
From equation, mol ratio of Acetylene(C₂H₂) : O₂ = 2 : 5, so mol O₂ :
= 5/2 x mol C₂H₂
= 5/2 x 1.123
= 2.8075 moles
H2O is the Bronsted-Lowry base because it accepts the hydrogen ion to become H3O after the reaction is complete.
Determining on the temperature, ice could melt, water could freeze or evaporate. Just an example.
<span>c. About one month
To answer this question, TAKE A LOOK AT THE GRAPH. If you do so, you'll see that the first peak for prey happens at about 2.5 months. The first peak for predators happens at about 3.5 months, or in other words, lags by about a month. Looking at the second peak for prey and predator you see the figures of 8 months and 9 months. Another lag of about 1 month. Looking at the third peak, you see a bit past 13 months and a bit past 14 months. Another one month lag. Therefore the answer is "c. About one month"</span>
Answer:
Because only a few bacterias can "fix" the atmosphere nitrogen.
Explanation:
The nitrogen at the atmosphere is in the form of N₂ and represents 78% of the atmosphere composition. The element is part of the constitution of nucleic acids and proteins, so the living beings needed them.
However, the animals and the plants can't catch the N₂. Some bacterias that live in mutualism with plants have this ability, and they "fix" the atmosphere nitrogen, transforming the N₂ in the ions nitrite (NO₃⁻) or ammonia (NH₃), which can be caught by the plants.
Them, when the primary consumers eat the plants they catch the nitrogen, which will be passed through the food chain.
So, it's difficult to pull nitrogen from the atmosphere into the nitrogen cycle of the biosphere because only a few bacterias can do it.