Answer:
a ) 2.68 m / s
b ) 1.47 m
Explanation:
The jumper will go down with acceleration as long as net force on it becomes zero . Net force of (mg - kx ) will act on it where kx is the restoring force acting in upward direction.
At the time of equilibrium
mg - kx = 0
x = mg / k
= (60 x 9.8 ) / 800
= 0.735 m
At this moment , let its velocity be equal to V
Applying conservation of energy
kinetic energy of jumper + elastic energy of cord = loss of potential energy of the jumper
1/2 m V² + 1/2 k x² = mg x
.5 x 60 x V² + .5 x 800 x .735 x .735 = 60 x 9.8 x .735
30 V² + 216.09 = 432.18
V = 2.68 m / s
b ) At lowest point , kinetic energy is zero and loss of potential energy will be equal to stored elastic energy.
1/2 k x² = mgx
x = 2 m g / k
= (2 x 60 x 9.8) / 800
= 1.47 m
Answer:
magnifying glass
Explanation:
makes objects bigger and smaller / used in science
Answer:
the distance traveled by the car is 42.98 m.
Explanation:
Given;
mass of the car, m = 2500 kg
initial velocity of the car, u = 20 m/s
the braking force applied to the car, f = 5620 N
time of motion of the car, t = 2.5 s
The decelaration of the car is calculated as follows;
-F = ma
a = -F/m
a = -5620 / 2500
a = -2.248 m/s²
The distance traveled by the car is calculated as follows;
s = ut + ¹/₂at²
s = (20 x 2.5) + 0.5(-2.248)(2.5²)
s = 50 - 7.025
s = 42.98 m
Therefore, the distance traveled by the car is 42.98 m.
My answer -
the corona,
the sun's outer layer, reaches temperatures of up to 2 million degrees
Fahrenheit (1.1 million Celsius). At this level, the sun's gravity can't
hold on to the rapidly moving particles, and it streams away from the
star.
The sun's activity shifts over the course of its 11-year cycle, with
sun spot numbers, radiation levels, and ejected material changing over
time. These alterations affect the properties of the solar wind,
including its magnetic field properties, velocity, temperature and
density. The wind also differs based on where on the sun it comes from
and how quickly that portion is rotating.
The velocity of the solar wind
is higher over coronal holes, reaching speeds of up to 500 miles (800
kilometers) per second. The temperature and density over coronal holes
are low, and the magnetic field is weak, so the field lines are open to
space. These holes occur at the poles and low latitudes, and reach their
largest when activity on the sun is at its minimum. Temperatures in the
fast wind can reach up to 1 million degrees F (800,000 C).
At the coronal streamer belt around the equator, the solar wind travels
more slowly, at around 200 miles (300 km) per second. Temperatures in
the slow wind reach up to 2.9 million F (1.6 million C).
p.s
Glad to help you and if you need anything else on brainly let me know so I can elp you again have an AWESOME!!! :^)