Another name is voltaic battery
Answer:

Explanation:
Given:
mass of first particle, 
mass of second particle, 
mass of third particle, 
coordinate position of first particle in meters, 
coordinate position of second particle in meters, 
coordinate position of third particle in meters, 
<u>Now, gravitational force on particle 3 due to particle 1:</u>



towards positive Y axis.
<u>gravitational force on particle 3 due to particle 2:</u>



towards positive X axis.
<u>Now the net force</u>



<em>For angle in counterclockwise direction from the +x-axis</em>

The atoms of some materials have no free electrons in their outer orbits. These electrons are busy doing other jobs, like being shared in the orbits of two adjacent atoms. They are so closely held that it is very difficult to pull them away. Most compounds of carbon and hydrogen are like this.
<span>Plastics, whose molecules are made from long combinations of carbon and hydrogen atoms, have few or no free electrons. This means that plastics are poor conductors of electricity (and they are also poor conductors of heat). hope that helped.</span>
1 astronomical unit = 149597870700m
Enrico should divide distance in meters with this number.
Energy to lift something =
(mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm = 5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
= 2,696,925 joules .
That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.