B a bar magnet has a north and a south pole.
Answer:
205 V
V
= 2.05 V
Explanation:
L = Inductance in Henries, (H) = 0.500 H
resistor is of 93 Ω so R = 93 Ω
The voltage across the inductor is

w = 500 rad/s
IwL = 11.0 V
Current:
I = 11.0 V / wL
= 11.0 V / 500 rad/s (0.500 H)
= 11.0 / 250
I = 0.044 A
Now
V
= IR
= (0.044 A) (93 Ω)
V
= 4.092 V
Deriving formula for voltage across the resistor
The derivative of sin is cos
V
= V
cos (wt)
Putting V
= 4.092 V and w = 500 rad/s
V
= V
cos (wt)
= (4.092 V) (cos(500 rad/s )t)
So the voltage across the resistor at 2.09 x 10-3 s is which means
t = 2.09 x 10⁻³
V
= (4.092 V) (cos (500 rads/s)(2.09 x 10⁻³s))
= (4.092 V) (cos (500 rads/s)(0.00209))
= (4.092 V) (cos(1.045))
= (4.092 V)(0.501902)
= 2.053783
V
= 2.05 V
Answer:
The acceleration of the object is
Explanation:
Given:
Initial velocity of object
= 200 feet/second
Final velocity of object
= 50 feet/second
Time of travel = 5 seconds
To calculate acceleration of the object we will find the rate of change of velocity with respect to time.
So, acceleration
is given by:

where
represents final velocity,
represents initial velocity and
is time of travel.
Plugging in values to evaluate acceleration.



The acceleration of the object is
(Answer). The negative sign shows the object is slowing down.
The magnitude of gravity is expressed in terms of its acceleration. So the magnitude of ' g ' at that altitude is exactly 6.5 m/s^2.