Answer : The equilibrium concentration of
is, 0.50 M
Explanation : Given,
Initial moles of
= 0.65 mole
Volume of solution = 1.0 L
Moles of
at equilibrium = 0.15 mole
The balanced equilibrium reaction will be,

Initial moles 0.65 0 0
At eqm. (0.65-x) x x
Moles of
at equilibrium = x = 0.15 mole
Moles of
at equilibrium = x = 0.15 mole
Moles of
at equilibrium = (0.65-x) = (0.65-0.15) = 0.50 mole
Now we have to calculate the concentration of
at equilibrium.
Formula used : 



Therefore, the equilibrium concentration of
is, 0.50 M
The correct answer is - intrusive rocks.
The intrusion is a process in which the rising magma in the Earth's crust, manages to break through pre-existing layers of rock, and after that cool off, solidify, and create new intrusive igneous rocks. By doing so, the magma is breaking up the layers of rocks, thus the intrusive igneous rocks that are forming from it, come to be inside totally different rock units. The intrusions are always happening inside the crust, and the rocks formed from them are igneous rocks that have large crystals because of the slow cooling off of the magma.
Answer:
The mass percentage of calcium carbonated reacted is 2.5%.
Explanation:
The reaction is:

Thus the Kp of the equilibrium will be:
Kp = partial pressure of carbon dioxide [as the other are solid]
Moles of calcium carbonate initially present = 
Let us apply ICE table to the equilibrium given:

Initial 0.2 0 0
Change -x +x +x
Equilibrium 0.2-x x x
Kp = partial pressure of carbon dioxide
Kp = Kc(RT)ⁿ
where n = difference in the number of moles of gaseous products and reactants
for given reaction n = 1
R = gas constant = 8.314 J /mol K
T = temperature = 800 ⁰C = 1073 K
Putting values
Kc =
Kc = ![\frac{[CO_{2}][CaO]}{[CaCO_{3}]}= \frac{x^{2} }{(0.2-x)}=1.3X10^{-4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCO_%7B2%7D%5D%5BCaO%5D%7D%7B%5BCaCO_%7B3%7D%5D%7D%3D%20%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B%280.2-x%29%7D%3D1.3X10%5E%7B-4%7D)


On calculating
x = 0.005
where x = the moles of calcium carbonate dissociated or reacted.
Percentage of the moles or mass reacted =
%
Answer:
Below
Explanation:
This is a single replacement/displacement reaction! This is the "formula" for single replacement : A + BC = AC + B