M = mass of aluminium = 1.11 kg
= specific heat of aluminium = 900
= initial temperature of aluminium = 78.3 c
m = mass of water = 0.210 kg
= specific heat of water = 4186
= initial temperature of water = 15 c
T = final equilibrium temperature = ?
using conservation of heat
Heat lost by aluminium = heat gained by water
M
(
- T) = m
(T -
)
(1.11) (900) (78.3 - T) = (0.210) (4186) (T - 15)
T = 48.7 c
Answer:
52.9 N, 364.7 N
Explanation:
First of all, we need to resolve both forces along the x- and y- direction. We have:
- Force A (178 N)

- Force B (259 N)

So the x- and y- component of the total force acting on the block are:

<span>c. run towards a source of water to extinguish the fire
</span>
Answer:
t = 2.13 10-10 s
, d = 6.39 cm
Explanation:
For this exercise we use the definition of refractive index
n = c / v
Where n is the refraction index, c the speed of light and v the speed in the material medium.
The refractive indices of ice and crown glass are 1.13 and 1.52, respectively, therefore the speed of the beam in the material medium is
v = c / n
As the beam strikes perpendicularly, the beam path is equal to the distance of the leaves, there is no refraction, so we can use the uniform motion relationships
v = d / t
t = d / v
t = d n / c
Let's look for the times on each sheet
Ice
t₁ = 1.4 10⁻² 1.31 / 3 10⁸
t₁ = 0.6113 10⁻¹⁰ s
Crown glass (BK7)
t₂ = 3.0 10⁻² 1.52 / 3.0 10⁸
t₂ = 1.52 10⁻¹⁰ s
Time is a scalar therefore it is additive
t = t₁ + t₂
t = (0.6113 + 1.52) 10⁻¹⁰
t = 2.13 10-10 s
The distance traveled by this time in a vacuum would be
d = c t
d = 3 10⁸ 2.13 10⁻¹⁰
d = 6.39 10⁻² m
d = 6.39 cm
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2.
So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density.
So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave.
Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>