Answer:
moving a magnet into a coil of wire in a closed circuit.
Ed 2020
<h2>Answer: 10.52m</h2><h2 />
First, we have to establish the <u>reference system</u>. Let's assume that the building is on the negative y-axis and that the brick was thrown at the origin (see figure attached).
According to this, the initial velocity
has two components, because the brick was thrown at an angle
:
(1)
(2)
(3)
(4)
As this is a projectile motion, we have two principal equations related:
<h2>
In the x-axis:
</h2>
(5)
Where:
is the distance where the brick landed
is the time in seconds
If we already know
and
, we have to find the time (we will need it for the following equation):
(6)
(7)
<h2>
In the y-axis:
</h2>
(8)
Where:
is the height of the building (<u>in this case it has a negative sign because of the reference system we chose)</u>
is the acceleration due gravity
Substituting the known values, including the time we found on equation (7) in equation (8), we will find the height of the building:
(9)
(10)
Multiplying by -1 each side of the equation:
>>>>This is the height of the building
Answer:
c) At a distance greater than r
Explanation:
If G= Gravitational constant
M= Mass of earth
r= distance from earth center
then orbital speed is ;
v = 
==> v²=GM/r
If speed of first satellite = V₁
==> V₁² = GM/r
==> r = GM/V₁²
If speed of second satellite say V₂ is less than V₁ then square of V₂ will be less than square of V₁ , and hence GM will be divided by less number in case of second satellite, and hence will give greater value of r as compared to first satellite.
So our answer is c
Answer:
- The velocity component in the flow direction is much larger than that in the normal direction ( A )
- The temperature and velocity gradients normal to the flow are much greater than those along the flow direction ( b )
Explanation:
For a steady two-dimensional flow the boundary layer approximations are The velocity component in the flow direction is much larger than that in the normal direction and The temperature and velocity gradients normal to the flow are much greater than those along the flow direction
assuming Vx ⇒ V∞ ⇒ U and Vy ⇒ u from continuity equation we know that
Vy << Vx
Answer:
the air within our bodies (in our lungs and stomachs, for example) is exerting the same pressure outwards so there's no pressure difference and no need for us to exert any effort.
Explanation: