Answer:
12.332 KW
The positive sign indicates work done by the system ( Turbine )
Explanation:
Stagnation pressure( P1 ) = 900 kPa
Stagnation temperature ( T1 ) = 658K
Expanded stagnation pressure ( P2 ) = 100 kPa
Expansion process is Isentropic, also assume steady state condition
mass flow rate ( m ) = 0.04 kg/s
<u>Calculate the Turbine power </u>
Assuming a steady state condition
( p1 / p2 )^(r-1/r) = ( T1 / T2 )
= (900 / 100)^(1.4-1/1.4) = ( 658 / T2 )
= ( 9 )^0.285 = 658 / T2
∴ T2 = 351.22 K
Finally Turbine Power / power developed can be calculated as
Wt = mCp ( T1 - T2 )
= 0.04 * 1.005 ( 658 - 351.22 )
= 12.332 KW
The positive sign indicates work done by the system ( Turbine )
Answer:
thank you for the free point have a great rest of your day
Answer:
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Explanation:
When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.
The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.
Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.
Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).
The only correct option left is "A"
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift