1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kherson [118]
3 years ago
5

The maximum stress that a bar will withstand before failing is called • Rapture Strength • Yield Strength • Tensile Strength • B

oth 1 & 2
Engineering
1 answer:
konstantin123 [22]3 years ago
7 0

Answer: Rupture strength

Explanation: Rupture strength is the strength of a material that is bearable till the point before the breakage by the tensile strength applied on it. This term is mentioned when there is a sort of deformation in the material due to tension.So, rupture will occur before whenever there are chances of failing and the material is still able to bear stresses before failing.  

You might be interested in
Atmospheric pressure is measured to be 14.769 psia. a. What would be the equivalent reading of a water barometer (inches of H20)
Fofino [41]

Answer:

(a) water height =408.66 in.

(b) mercury height=30.04 in.

Explanation:

Given: P=14.769 psi     ( 1 psi= 6894.76 \frac{N}{m^2} )

we know that   P=\rho\times g\timesh

where \rho =Density,g=9.81\frac{m}{s^2}

     h=height.

Given that P=14.769 psi ⇒P= 101828.6 7\dfrac{N}{m^2}

(a) P=\rho_{w}\times g\times h_{w}  

     \rho_{w}=1000\frac{Kg}{m^3}

⇒101828.67=1000\times 9.81\times h_{w}

h_{w}=10.38 m

So water barometer will read 408.66 in.            (1 m=39.37 in)

(b)  P=\rho_{hg}\times g\times h_{hg}

     \rho_{hg}=13600

So 101828.67=13600\times 9.81\times h_{hg}

h_{hg}=0.763 m

So mercury barometer will read 30.04 in.

6 0
3 years ago
Solve using Matlab the problems:
Firlakuza [10]

Answer:

Explanation:

% Clears variables and screen

clear; clc

% Asks user for input

n = input('Total number of objects: ');

r = input('Size of subgroup: ');

% Computes and displays permutation according to basic formulas

p = 1;

for i = n - r + 1 : n

   p = p*i;

end

str1 = [num2str(p) ' permutations'];

disp(str1)

% Computes and displays combinations according to basic formulas

str2 = [num2str(p/factorial(r)) ' combinations'];

disp(str2)

=================================================================================

Example: check

How many permutations and combinations can be made of the 15 alphabets, taking four at a time?

The answer is:

32760 permutations

1365 combinations

==================================================================================

7 0
3 years ago
Brainliest need help
insens350 [35]

Answer:

answer c

Explanation:

4 0
2 years ago
A furnace wall composed of 200 mm, of fire brick. 120 mm common brick 50mm 80% magnesia and 3mm of steel plate on the outside. I
Liula [17]

Answer:

  • fire brick / common brick : 1218 °C
  • common brick / magnesia : 1019 °C
  • magnesia / steel : 90.06 °C
  • heat loss: 4644 kJ/m^2/h

Explanation:

The thermal resistance (R) of a layer of thickness d given in °C·m²·h/kJ is ...

  R = d/k

so the thermal resistances of the layers of furnace wall are ...

  R₁ = 0.200/4 = 0.05 °C·m²·h/kJ

  R₂ = 0.120 2.8 = 3/70 °C·m²·h/kJ

  R₃ = 0.05/0.25 = 0.2 °C·m²·h/kJ

  R₄ = 0.003/240 = 1.25×10⁻⁵ °C·m²·h/kJ

So, the total thermal resistance is ...

  R₁ +R₂ +R₃ +R₄ = R ≈ 0.29286 °C·m²·h/kJ

__

The rate of heat loss is ΔT/R = (1450 -90)/0.29286 = 4643.70 kJ/(m²·h)

__

The temperature drops across the various layers will be found by multiplying this heat rate by the thermal resistance for the layer:

  fire brick: (4543.79 kJ/(m²·h))(0.05 °C·m²·h/kJ) = 232 °C

so, the fire brick interface temperature at the common brick is ...

  1450 -232 = 1218 °C

For the next layers, the interface temperatures are ...

  common brick to magnesia = 1218 °C - (3/70)(4643.7) = 1019 °C

  magnesia to steel = 1019 °C -0.2(4643.7) = 90.06 °C

_____

<em>Comment on temperatures</em>

Most temperatures are rounded to the nearest degree. We wanted to show the small temperature drop across the steel plate, so we showed the inside boundary temperature to enough digits to give the idea of the magnitude of that.

5 0
3 years ago
Briefly explain how each of the following influences the tensile modulus of a semicrystalline polymer and why:(a) molecular weig
marin [14]

Answer:

(a) Increases

(b) Increases

(c) Increases

(d) Increases

(e) Decreases

Explanation:

The tensile modulus of a semi-crystalline polymer depends on the given factors as:

(a) Molecular Weight:

It increases with the increase in the molecular weight of the polymer.

(b) Degree of crystallinity:

Tensile strength of the semi-crystalline polymer increases with the increase in the degree of crystallinity of the polymer.

(c) Deformation by drawing:

The deformation by drawing in the polymer results in the finely oriented chain structure of the polymer with the greater inter chain secondary bonding structure resulting in the increase in the tensile strength of the polymer.

(d) Annealing of an undeformed material:

This also results in an increase in the tensile strength of the material.

(e) Annealing of  a drawn material:

A semi crystalline material which is drawn when annealed results in the decreased tensile strength of the material.

5 0
3 years ago
Other questions:
  • Tranquilizing drugs that inhibit sympathetic nervous system activity often effectively reduce people's subjective experience of
    8·1 answer
  • What is Differential Analysis in fluid mechanics?
    13·1 answer
  • The heat input to an Otto cycle is 1000kJ/kg. The compression ratio is 8 and the pressure and temperature at the beginning of th
    8·1 answer
  • A subsurface exploration report shows that the average water content of a fine-grained soil in a proposed borrow area is 22% and
    9·1 answer
  • The value of universal gas constant is same for all gases?<br> a) yes<br> b)No
    15·1 answer
  • What is this i dont understand this at all
    9·1 answer
  • How many astronauts work<br> in the International Space Station
    7·1 answer
  • Two basic types of mechanical fuel injector systems?​
    13·2 answers
  • Write a paragraph on computer 473
    5·1 answer
  • a low velocity fastening system that is used to drive steel pins or threaded studs into a masonry and steel is a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!