Answer: downward velocity = 6.9×10^-4 cm/s
Explanation: Given that the
Diameter of the smoke = 0.05 mm = 0.05/1000 m = 5 × 10^-5 m
Where radius r = 2.5 × 10^-5 m
Density = 1200 kg/m^3
Area of a sphere = 4πr^2
A = 4 × π× (2.5 × 10^-5)^2
A = 7.8 × 10^-9 m^2
Volume V = 4/3πr^3
V = 4/3 × π × (2.5 × 10^-5)^3
V = 6.5 × 10^-14 m^3
Since density = mass/ volume
Make mass the subject of formula
Mass = density × volume
Mass = 1200 × 6.5 × 10^-14
Mass M = 7.9 × 10^-11 kg
Using the formula
V = sqrt( 2Mg/ pCA)
Where
g = 9.81 m/s^2
M = mass = 7.9 × 10^-11 kg
p = density = 1200 kg/m3
C = drag coefficient = 24
A = area = 7.8 × 10^-9m^2
V = terminal velocity
Substitute all the parameters into the formula
V = sqrt[( 2 × 7.9×10^-11 × 9.8)/(1200 × 24 × 7.8×10^-9)]
V = sqrt[ 1.54 × 10^-9/2.25×10-4]
V = 6.9×10^-6 m/s
V = 6.9 × 10^-4 cm/s
Answer:
import numpy as np
import time
def matrixMul(m1,m2):
if m1.shape[1] == m2.shape[0]:
t1 = time.time()
r1 = np.zeros((m1.shape[0],m2.shape[1]))
for i in range(m1.shape[0]):
for j in range(m2.shape[1]):
r1[i,j] = (m1[i]*m2.transpose()[j]).sum()
t2 = time.time()
print("Native implementation: ",r1)
print("Time: ",t2-t1)
t1 = time.time()
r2 = m1.dot(m2)
t2 = time.time()
print("\nEfficient implementation: ",r2)
print("Time: ",t2-t1)
else:
print("Wrong dimensions!")
Explanation:
We define a function (matrixMul) that receive two arrays representing the two matrices to be multiplied, then we verify is the dimensions are appropriated for matrix multiplication if so we proceed with the native implementation consisting of two for-loops and prints the result of the operation and the execution time, then we proceed with the efficient implementation using .dot method then we return the result with the operation time. As you can see from the image the execution time is appreciable just for large matrices, in such a case the execution time of the efficient implementation can be 1000 times faster than the native implementation.
Sometimes for a phone or computer
Answer:
The face of the claw on the claw hammer is usually a smooth curve so as to improve the ease with which nails are removed when removing nails because as the nail held between the V shaped split claw is being pulled out from the wood, it slides more and more towards cheek, reducing the distance of the nail from the cheek which is the fulcrum, thereby increasing the mechanical advantage because the location of the hand on the grip remains unchanged
Explanation: