Answer:
v(7) = 52.915 m/s
Explanation:
First, find the value for acceleration.
F = ma
100 = .5 * a
a = 200 m/s²
Next find the velocity at x = 7 using kinematic equations.
v² = v₀² + 2a(Δx)
v² = (0)² + 2(200)(7)
v =
v = 52.915 m/s
Answer:

Explanation:
If we have a net force F acting on a body of mass m it will experiment an acceleration a. Newton's 2nd Law gives us the relation between these quantities: F=ma.
In our case, we want to calculate the acceleration, so we write:

With the values we have we get:

Sometimes it just picks for you
Answer:
The linear mass density of rope is 0.16 kg/m.
Explanation:
mass, m = 0.52 kg
force, F = 47 N
length, L = 3.3 m
(a) The linear mass density of the rope is defined as the mass of the rope per unit length.
Linear mass density = m/L = 0.52/3.3 = 0.16 kg/m