Answer:
19.82%
Step-by-step explanation:
Add all members that want weight lifting
47 + 21 + 14 + 29 = 111
111 / total members
111 / 560 = 0.1982
0.1982 * 100% = 19.82%
1. (x - 9) + (x + 5)
You split the x^2 into two xs
The one with an x (-4x) is what the two numbers should equal
-9 + 5 = 4
The one without an x (-45) is what the two numbers product should be
-9 times 5 = -45
*so remember the x is the sum of the two
*no x is the product of the two
Theres no quick trick to find the answer u just have to plug it in
*start with all the numbers that multiply for the no x (-45)
-3 and 15 or 3 and -15 is obviously not it as the sum does not equal -4
Those sums equal 12 or -12
I’ll do one more and ur on ur own comrade (ok and ill do number 4)
3. (x - 8) + (x - 9)
ok this time both the answers have a negative
*if it has only one negative in the problem there are going to be TWO negatives in the answer
-8 and -9 sum is -17
-8 and -9 sum is 72
If there was only one negative in the answer it would make the 72 negative and there is no -72 in the problem
So this one is
(x - 8) + (x - 9) (u dont have to have it like this u can put the (x - 9) in the front doesn’t matter which way it’s just the signs (- & +) that matter
OK now 4.
4. This one is very easy as all u need to do is find the two numbers for the product
(X - 6) (X + 6)
(Again it doesn’t matter which () is in front just the SIGNS INSIDE THE PARENTHESES ( + & - )
GL
Answer:
I dunno understand if what kind of opperation you're doing. Is there a multiplication?
<h3>
Step-by-step explanation:</h3>
0.60 · 10,000 % = 0.00006 % · 0.6<em>x </em>· 10-5%
If it's a multiplication the answer will be
X = 150125000/ 9
Answer:
what is ac?
Step-by-step explanation:
The system is:
i) <span>2x – 3y – 2z = 4
ii) </span><span>x + 3y + 2z = –7
</span>iii) <span>–4x – 4y – 2z = 10
the last equation can be simplified, by dividing by -2,
thus we have:
</span>i) 2x – 3y – 2z = 4
ii) x + 3y + 2z = –7
iii) 2x +2y +z = -5
The procedure to solve the system is as follows:
first use any pairs of 2 equations (for example i and ii, i and iii) and equalize them by using one of the variables:
i) 2x – 3y – 2z = 4
iii) 2x +2y +z = -5
2x can be written as 3y+2z+4 from the first equation, and -2y-z-5 from the third equation.
Equalize:
3y+2z+4=-2y-z-5, group common terms:
5y+3z=-9
similarly, using i and ii, eliminate x:
i) 2x – 3y – 2z = 4
ii) x + 3y + 2z = –7
multiply the second equation by 2:
i) 2x – 3y – 2z = 4
ii) 2x + 6y + 4z = –14
thus 2x=3y+2z+4 from i and 2x=-6y-4z-14 from ii:
3y+2z+4=-6y-4z-14
9y+6z=-18
So we get 2 equations with variables y and z:
a) 5y+3z=-9
b) 9y+6z=-18
now the aim of the method is clear: We eliminate one of the variables, creating a system of 2 linear equations with 2 variables, which we can solve by any of the standard methods.
Let's use elimination method, multiply the equation a by -2:
a) -10y-6z=18
b) 9y+6z=-18
------------------------ add the equations:
-10y+9y-6z+6z=18-18
-y=0
y=0,
thus :
9y+6z=-18
0+6z=-18
z=-3
Finally to find x, use any of the equations i, ii or iii:
<span>2x – 3y – 2z = 4
</span>
<span>2x – 3*0 – 2(-3) = 4
2x+6=4
2x=-2
x=-1
Solution: (x, y, z) = (-1, 0, -3 )
Remark: it is always a good attitude to check the answer, because often calculations mistakes can be made:
check by substituting x=-1, y=0, z=-3 in each of the 3 equations and see that for these numbers the equalities hold.</span>