1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Contact [7]
3 years ago
6

Do physical changes include changes in the states of matter?

Physics
2 answers:
VikaD [51]3 years ago
8 0
I think so yeah if I’m not right sorry
MAXImum [283]3 years ago
6 0

Yes. Generally physical changes are changes that occur to the shape, size, or state of a matter of a substance. So if a block of ice melted into water that is physical change as phase changes (state of matter changes) are physical changes.

You might be interested in
Suppose that the dipole moment associated with an iron atom of an iron bar is 2.8 × 10-23 J/T. Assume that all the atoms in the
masya89 [10]

To solve this exercise it is necessary to apply the equations related to the magnetic moment, that is, the amount of force that an image can exert on the electric currents and the torque that a magnetic field exerts on them.

The diple moment associated with an iron bar is given by,

\mu = \alpha *N

Where,

\alpha = Dipole momento associated with an Atom

N = Number of atoms

\alpha y previously given in the problem and its value is 2.8*10^{-23}J/T

L = 5.8cm = 5.8*10^{-2}m

A = 1.5cm^2 = 1.5*10^{-4}m^2

The number of the atoms N, can be calculated as,

N = \frac{\rho AL}{M_{mass}}*A_n

Where

\rho = Density

M_{mass} = Molar Mass

A = Area

L = Length

A_n =Avogadro number

N = \frac{(7.9g/cm^3)(1.5cm)(5.8cm^2)}{55.9g/mol}(6.022*10^{23}atoms/mol)

N = 7.4041*10^{23}atoms

Then applying the equation about the dipole moment associated with an iron bar we have,

\mu = \alpha *N

\mu = (2.8*10^{-23})*(7.4041*10^{23})

\mu = 20.72Am^2

PART B) With the dipole moment we can now calculate the Torque in the system, which is

\tau = \mu B sin(90)

\tau = (20.72)(2.2)

\tau = 45.584N.m

<em>Note: The angle generated is perpendicular, so it takes 90 ° for the calculation made.</em>

3 0
4 years ago
When non-metric units were used in the United Kingdom, a unit of mass called the pound-mass (lbm) was employed, where 1lbm=0.453
Drupady [299]

Answer:

a) 0.022%

b) 10014.32 lb

Explanation:

a) Percentage uncertainty would be

0.0001\times \frac{100}{0.4539}=0.022%

Percent uncertainty is 0.022%

b) For 1 kg uncertainty mass in kg would be

\frac{1}{0.022}\times {100}=4545.5\ kg

Mass in pounds would be

\frac{4545.5}{0.4539}=10014.32\ lb

Mass in pound-mass is 10014.32 lb

8 0
4 years ago
Can y’all help me pleaseeee
mart [117]
it would still be 5
8 0
3 years ago
Read 2 more answers
Andy is waiting at the signal. As soon as the light turns green, he accelerates his car at a uniform rate of 8.00 meters/second2
sleet_krkn [62]

-- Accelerating at the rate of 8 m/s², Andy's speed
   after 30 seconds is

                                   (8 m/s²) x (30.0 s)  =  240 m/s .

-- His average speed during that time is

                                 (1/2) (0 + 240 m/s)  =  120 m/s .

-- In 30 sec at an average speed of 120 m/s,
   Andy will travel a distance of
                                                 (120 m/s) x (30 sec) = 3,600 m

                                                                                = 3.6 km .

"But how ? ! ?", you ask.

How in the world can Andy leave a stop light and then
cover 3.6 km = 2.24 miles in the next 30 seconds ?

The answer is:  His acceleration of  8 m/s², or about  0.82 G
is what does it for him.

At that rate of acceleration ...

-- Andy achieves "Zero to 60 mph" in 3.35 seconds,
   and then he keeps accelerating.

-- He hits 100 mph in 5.59 seconds after jumping the light ...
   and then he keeps accelerating.

-- He hits 200 mph in 11.2 seconds after jumping the light ...
   and then he keeps accelerating.

-- After accelerating at 8 m/s² for 30 seconds, Andy and his
   car are moving at  537 miles per hour !
   We really don't know whether he keeps accelerating,
    but we kind of doubt it. 

A couple of observations in conclusion:

-- We can't actually calculate his displacement with the information given.
   Displacement is the distance and direction between the starting- and
   ending-points, and we're not told whether Andy maintains a straight line
   during this tense period, or is all over the road, adding great distance
   but not a lot of displacement.

-- It's also likely that sometime during this performance, he is pulled
   over to the side by an alert cop in a traffic-control helicopter, and
   never actually succeeds in accomplishing the given description. 
5 0
4 years ago
1. A particular lever is 90.0% efficient. If 50.0 J of work are done on the lever, then how much work does the lever do on its l
laila [671]

Answer:

Explanation:

Using the efficiency formula;

Efficiency = Work done by the machine (output)/work done on the machine (input) ×100%

Efficiency =w/50 ×100

90 = 100w/50

Cross multiply

90×50 = 100W

4500 = 100W

W = 4500/100

W = 45Joules

Hence the lever does 45Joules of work on its load

2) Mechanical Advantage= Load/Effort

Given

MA = 4

Load = 500N

4 = 500/Effort

Effort = 500/4

Effort =125N

Hence the effort required to lift the load is 125N

8 0
3 years ago
Other questions:
  • The Solar System is made up of eight planets, numerous comets, asteroids, and moons, and the Sun. The force that holds all of th
    7·2 answers
  • If an object gains an additional 5 m/s of speed every second, the object is?
    8·2 answers
  • The image of an object is 20 cm in front of a convex lens with a 10cm radius
    8·1 answer
  • Describe the rise and fall of a basketball using the concepts of kinetic energy and potential energy
    14·1 answer
  • One way to search for planets around other stars is the doppler technique. another way uses transits of planets around other sta
    5·1 answer
  • A fish swimming in a horizontal plane has velocity i = (4.00 + 1.00 ) m/s at a point in the ocean where the position relative to
    12·1 answer
  • If a projectile hits a stationary target, and the projectile continues to travel in the same direction, the mass of the projecti
    6·1 answer
  • Suppose that a ball decelerates from 8.0 m/s to a stop as it rolls up a hill, losing 10% of its kinetic energy to friction. Dete
    5·1 answer
  • An electric current of 0.25 A passes through a circuit that has a resistance of
    10·2 answers
  • 4. Sally applies a horizontal force of 462 N with a rope to drag a wooden crate across a floor with a constant speed. The rope t
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!