<h2>

</h2>
<u>Air pressure has no effect at all in an ideal gas approximation. This is because pressure and density both contribute to sound velocity equally, and in an ideal gas the two effects cancel out, leaving only the effect of temperature. Sound usually travels more slowly with greater altitude, due to reduced temperature.</u>
The main difference between the model of the atom proposed by Greek philosophers and the model proposed centuries later by Dalton is that the Greek one was mainly speculative and philosophical - it wasn't based on real evidence, but on their suggestions and thoughts about the matter. On the other hand, Dalton had the means to prove his theory using viable evidence, not just speculations.
The answer I found was parabola?
Answer:
Explanation:
All the displacement will be converted into vector, considering east as x axis and north as y axis.
5.3 km north
D = 5.3 j
8.3 km at 50 degree north of east
D₁= 8.3 cos 50 i + 8.3 sin 50 j.
= 5.33 i + 6.36 j
Let D₂ be the displacement which when added to D₁ gives the required displacement D
D₁ + D₂ = D
5.33 i + 6.36 j + D₂ = 5.3 j
D₂ = 5.3 j - 5.33i - 6.36j
= - 5.33i - 1.06 j
magnitude of D₂
D₂²= 5.33² + 1.06²
D₂ = 5.43 km
Angle θ
Tanθ = 1.06 / 5.33
= 0.1988
θ =11.25 ° south of due west.
Answer:
Mass and height
Explanation:
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. The most common use of gravitational potential energy is for an object near the surface of the Earth where the gravitational acceleration can be assumed to be constant at about 
Which is represented as;

stands for gravitational potantial energy,
m stands for mass of object,
g is the gravitational constant and
h is the height.
Here we see that mass of object and height is directly proportional to the gravitational potential energy.
That means increasing in mass and height will result in increasing gravitational potential energy.