Answer:

Explanation:
Since the pulley has a mass concentrated on its rim, the pulley can be considered as a ring.
The moment of inertia of a ring is

The mass on the left is heavier, that is the pulley is rotating counterclockwise.
By Newton's Second Law, the net torque is equal to moment of inertia times angular acceleration.

Here, the net torque is the sum of the weight on the left and the weight on the right.

Applying Newton's Second Law gives the angular acceleration

The relation between angular acceleration and linear acceleration is

Then, the linear acceleration of the masses is

They are all classified in the same kingdom
Explanation:
Michael should put the vase at the bottom of the shelf to reduce the potential energy because the height of the vase to the floor is nearly zero.
Answer:
559.5 N
Explanation:
Applying,
v² = u²+2gs............. Equation 1
Where v = final velocity,
From the question,
Given: s = 5.10 m, u = 0 m/s ( from rest)
Constant: 9.8 m/s²
Therefore,
v² = 0²+2×9.8×5.1
v² = 99.96
v = √(99.96)
v = 9.99 m/s
As the diver eneters the water,
u = 9.99 m/s, v = 0 m/s
Given: t = 1.34 s
Apply
a = (v-u)/t
a = 9.99/1.34
a = -7.46 m/s²
F = ma.............. Equation 2
Where F = force, m = mass
Given: m = 75 kg, a = -7.46 m/s²,
F = 75(-7.46)
F = -559.5 N
Hence the average force exerted on the diver is 559.5 N
Answer is A switch or a fuse in an electrical circuit is always connected to the live wire so that the socket or appliance is not live when switched off.
i hope it is helpful