Answer:
See explanation
Explanation:
Acids and bases contain ions that interact with water. According to the Arrhenius definition, acids are substances that produce hydrogen ion in water while bases are substances that produce hydroxide ion in water.
The pH scale is a graphic description of the hydrogen or hydroxide ion present in a sample. Since pH= -log[H^+], the higher the pH , the lower the hydrogen ion concentration and vice versa.
Similarly, pOH= -log [OH^-] , hence the more the OH^- concentration the lower the pOH.
However pH + pOH =14.
Thus the concentration of hydrogen or hydroxide ions present determines the pH of any solution.
Answer:
Assuming air resistance is negligible, all of the potential energy that the object has at the top of the ramp is converted into kinetic energy by the time it gets to the bottom of the ramp. This is because no matter what path the object takes to move the 5m vertically (ie. falling straight down v. sliding on the ramp), gravity does the same amount of work on it.
Thus, calculate the total amount of potential energy at the top of the ramp:
Ep=mgh
Ep=4(9.81)5
Ep=196.2 Joules
Because all of this potential energy is converted into kinetic energy in the object by the bottom of the ramp, the object hits the spring with 196.2J of energy.
By using the formula for elastic potential energy, you can calculate exactly how far the spring compresses.
196.2=(1/2)k(x^2)
392.4=(350)(x^2)
1.1211=x^2
sqrt(1.1211)=x
x=1.059m
As for the last part of the question, after the object compresses the spring fully and stops momentarily, the spring converts it's elastic potential energy back into kinetic energy in the object and pushes it away again.
Explanation:
Answer:
1.5 × 10³⁶ light-years
Explanation:
A certain square region in interstellar space has an area of approximately 2.4 × 10⁷² (light-years)². The area of a square can be calculated using the following expression.
A = l²
where,
A is the area of the square
l is the side of the square
l = √A = √2.4 × 10⁷² (light-years)² = 1.5 × 10³⁶ light-years
Answer:
Hi
Final temperature = 250.11 °C
Final volume = 0,1 m3.
Process work = 0
Explanation:
The specific volume in the initial state is: v = 0.1m3/2 kg = 0.05 m3/kg.
This volume is located between the volumes as saturated liquid and saturated steam at 20 °C. For this reason the water is initially in a liquid vapor mixture. As the piston was blocked the volume remains constant and the process is isometric, also known as isocoric process, so the final temperature will be the water temperature at a saturated steam of v=0.05m3/kg, which is obtained by using steam tables for water, by linear interpolation. As follows, using table A-4 of the Cengel book 7th Edition:
v=0.05 m3/kg
v1=0.057061 m3/kg
T1=242.56°C
v2=0.049779 m3/kg
T2=250.35°C
T=
The process work is zero because there is no change in volume during heating:
W=PxΔv=Px0=0
where
W=process work
P=pressure
Δv=change of volume, is zero because the piston was blocked so the volume remains constant.
Linear expansivity is a type of thermal expansion. It is described by a fraction that represents the fractional increase in length of a thin beam of a material exposed to a temperature increase of one degree Celsius. ... Linear expansivity is used in many real world applications.