The answer for the following problem is mentioned below.
- <u><em>Therefore the final temperature of the gas is 740 K</em></u>
Explanation:
Given:
Initial pressure of the gas (
) = 1.8 atm
Final pressure of the gas (
) = 4 atm
Initial temperature of the gas (
) = 60°C = 60 + 273 = 333 K
To solve:
Final temperature of the gas (
)
We know;
From the ideal gas equation;
we know;
P × V = n × R × T
So;
we can tell from the above equation;
<u> P ∝ T</u>
(i.e.)
<em> </em>
<em> = constant</em>
= 
Where;
= initial pressure of a gas
= final pressure of a gas
= initial temperature of a gas
= final temperature of a gas
= 
=
= 740 K
<u><em>Therefore the final temperature of the gas is 740 K</em></u>
Answer:
The answer to your question is Aluminum
Explanation:
Number of clues
1.- If this element has 3 rings in its Bohr model, we are looking for and element located in the third period of the periodic table.
For example Sodium, Magnesium, Aluminum, Silicate, Phosphorus, Sulfur, Chlorine and, Argon.
2.- It makes three bonds to become stable, then we are looking for and element located in the third group like
Boron, Aluminum, Gallium, Indium, etc
Conclusion
The element that has both characteristics is Aluminum
When HCl reacts with a metal, hydrogen gas will be evolved. To test this gas, insert a burning splinter into the outlet of gas, the flame will be extinguished with a pop sound. This will confirm the gas is hydrogen.