Answer:
Approximately
. (Assuming that
, and that the tabletop is level.)
Explanation:
Weight of the book:
.
If the tabletop is level, the normal force on the book will be equal (in magnitude) to weight of the book. Hence,
.
As a side note, the
and
on this book are not equal- these two forces are equal in size but point in the opposite directions.
When the book is moving, the friction
on it will be equal to
, the coefficient of kinetic friction, times
, the normal force that's acting on it.
That is:
.
Friction acts in the opposite direction of the object's motion. The friction here should act in the opposite direction of that
applied force. The net force on the book shall be:
.
Apply Newton's Second Law to find the acceleration of this book:
.
Answer:
Your answer would be C <u><em>Hope this helps</em></u>
Answer:

Explanation:
The electric field equation of a electromagnetic wave is given by:
(1)
- E(max) is the maximun value of E, it means the amplitude of the wave.
- k is the wave number
- ω is the angular frequency
We know that the wave length is λ = 700 nm and the peak electric field magnitude of 3.5 V/m, this value is correspond a E(max).
By definition:
And the relation between λ and f is:




The angular frequency equation is:


![\omega=2.69*10^{15} [rad/s]](https://tex.z-dn.net/?f=%5Comega%3D2.69%2A10%5E%7B15%7D%20%5Brad%2Fs%5D)
Therefore, the E equation, suing (1), will be:
(2)
For the magnetic field we have the next equation:
(3)
It is the same as E. Here we just need to find B(max).
We can use this equation:



Putting this in (3), finally we will have:
(4)
I hope it helps you!
Answer:
NaNO3.
Explanation:
The Na ion has one positive charge and the NO3 ion has one negative charge so the correct formula is NaNO3.