Me and you! enjoy your day girllllaa or boy
The only real difference is that common seismic waves travel through the ground and sound waves travel through the air. If you had a pipe attached to granite and you were listening to it, you might detect both.
A dropped object only fall 5 meters down after 1 second of freefall, yet achieve a speed of 10m/s due to acceleration due to gravity.
s = vt - 1 / 2 at²
s = Displacement
v = Final velocity
t = Time
a = Acceleration
s = 5 m
t = 1 s
a = 10 m / s²
5 = ( v * 1 ) - ( 1 / 2 * 10 * 1 * 1 )
5 = v - 5
v = 10 m / s
The equation used to solve the given problem is an equation of motion. In a free fall motion, usually air resistance is not considered for easier calculation. If air resistance is considered acceleration cannot be constant throughout the entire motion.
Therefore, a dropped object only fall 5 meters down after 1 second of freefall, yet achieve a speed of 10m/s due to acceleration due to gravity.
To know more about equation of motion
brainly.com/question/5955789
#SPJ1
Answer:
boron
aluminum
gallium
indium
thallium
Explanation:
Any of these could work. Nitrogen has 5 valence electrons so you just needed to pick an element that has 3 valence electrons that nitrogen could borrow. This periodic table shows valence electron counts:
Answer:
Venus
Explanation:
Venus is the second plate in the solar system. It is a terrestrial planet and it is part of the inner rocky planets.
In Venus, it rains sulfuric acid but the rain never reaches the surface before it becomes evaporated. The acid forms from the combination of sulfur oxide and water in the atmosphere at a height of about 42km. As it condenses and falls, it becomes evaporated back at lower elevations. The surface is therefore protected from the sulfuric acid rain.
The sulfur oxide and water vapor must have been derived from volcanic activities in geologic times past.