Answer:
you will be the clouds
and I will be the sky.
you will be the ocean
and I will be the shore.
you will be the trees
and I will be the wind.
whatever we are, you and I will always collide.
There you go! Let me know if it helped.
:)
Answer:
On a roller coaster, energy changes from potential to kinetic and back again many times over and over the course of the ride. Kinetic energy is energy that an object has because of its motion. All moving objects possess kinetic energy, which is determined by the mass and speed of the object.
Explanation:
The question is incomplete. I can help you by adding the information missing. They want you to calculate a) the radius of the cyclotron orbit for an electron with speed 1.0 * 10^6 m/s^2 and b) the radius of a cyclotron orbit for a proton with speed 5.0 * 10^4 m/s.
The two tasks involve combining the equations of the magnectic force and the centripetal force in a circular motion.
When you do that, you will obtain an expression to find the radius of the circular motion, which is the radius of the cyclotron that impulses the particles.
a)
Magentic force, F = q*v*B
q is the charge of the electron = 1.6 * 10^ -19 C
v is the speed = 1.0 * 10 ^ 6 m/s
B is the magentic field = 5.0 * 10 ^-5 T
Centripetal force, F = m*Ac = m * v^2 / R
where,
Ac = centripetal acceleration
m = mass of the electron = 9.11 * 10 ^-31 kg
R = the radius of the orbit
Now equal the two forces: q*v*B = m * v^2 / R => R = m*v / (q*B)
=> R = (9.11 * 10^31 kg) (1.0*10^6m/s) / [ (1.6 * 10^-19C)* (5.0 * 10^-5T) ]
=> R = 0.114 m
b) The equations are the same, just now use the speed, charge and mass of the proton instead of those of the electron.
R = m*v / (qB) = (1.66*10^-27 kg)(5.0*10^4 m/s) / [(1.6*10^-19C)(5*10^-5T)]
=> R = 10.4 m
Answer:
The tension force has a magnitude of 490 N, and acts vertically upward
Explanation:
The complete question is:
A 50kg chandelier hangs from a ceiling suspended by a cable. What is the Tension (magnitude and direction of the force) in the cable?
ANS:
Tension is the force applied axially by rope, chain, cable, rod, etc, as a reaction force. The direction of tension is always towards the support. Since, the support here, is ceiling.
Therefore, the direction of tension force will be <u>vertically upward</u><u>.</u>
Since the chandelier is hanging stationary, without any motion. Thus, there must not be any unbalanced force applied on it.
Hence, the tension force must be equal to the weight of chandelier.
Tension Force = Weight of Chandelier
T = W = mg
T = (50 kg)(9.8 m/s²)
<u>T = 490 N</u>
<u>Thus, the tension force has a magnitude of 490 N, and acts vertically upward</u>
Define an x-y coordinate system such that
The positive x-axis = the eastern direction, with unit vector

.
The positive y-axis = the northern direction, with unit vector

.
The airplane flies at 340 km/h at 12° east of north. Its velocity vector is

The wind blows at 40 km/h in the direction 34° south of east. Its velocity vector is
![\vec{v}_{2} =40(cos(34^{o})\hat{i} - sin(24^{o})]\hat{j}) = 33.1615\hat{i} -22.3677\hat{j})](https://tex.z-dn.net/?f=%5Cvec%7Bv%7D_%7B2%7D%20%3D40%28cos%2834%5E%7Bo%7D%29%5Chat%7Bi%7D%20-%20sin%2824%5E%7Bo%7D%29%5D%5Chat%7Bj%7D%29%20%3D%2033.1615%5Chat%7Bi%7D%20-22.3677%5Chat%7Bj%7D%29)
The plane's actual velocity is the vector sum of the two velocities. It is

The magnitude of the actual velocity is
v = √(121.1615² + 306.0473²) = 329.158 km/h
The angle that the velocity makes north of east is
tan⁻¹ (306.04733/121.1615) = 21.6°
Answer:
The actual velocity is 329.2 km/h at 21.6° north of east.