If net charge on one object is doubled, then electric force will also get double. It is because they are directly proportional to each other.
Hope this helps!
Answer:
The minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Explanation:
We know by equation of motion that,

Where, v= final velocity m/sec
u=initial velocity m/sec
a=Acceleration m/
s= Distance traveled before stop m
Case 1
u= 13 m/sec, v=0, s= 57.46 m, a=?

a = -1.47 m/
(a is negative since final velocity is less then initial velocity)
Case 2
u=29 m/sec, v=0, s= ?, a=-1.47 m/
(since same friction force is applied)

s = 285.94 m
Hence the minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Answer:
α = 2,857 10⁻⁵ ºC⁻¹
Explanation:
The thermal expansion of materials is described by the expression
ΔL = α Lo ΔT
α = 
in the case of the bar the expansion is
ΔL = L_f - L₀
ΔL= 1.002 -1
ΔL = 0.002 m
the temperature variation is
ΔT = 100 - 30
ΔT = 70º C
we calculate
α = 0.002 / 1 70
α = 2,857 10⁻⁵ ºC⁻¹
This shifts the star’s spectral lines toward the blue end of the spectrum. If the star is moving away from us, it’s waves are effectively stretched out when they reach earth, increasing their wavelength. This shifts the star’s spectral lines toward the red end of the spectrum.
Answer:
about 4 km
Explanation:
15 minutes is a quarter of an hour, so you divide 16km by 4 to get your answer