the answer should be:
When the buoyant force is equal to the force of gravity
My personal understanding and opinion is that ALL of those questions
should be part of an assessment of Physical Activity Readiness.
Explanation:
Velocity = displacement / time
v = √((58 m)² + (135 m)²) / (12 min × 60 s/min)
v = 0.20 m/s
Answer:
15 m/s or 1500 cm/s
Explanation:
Given that
Speed of the shoulder, v(h) = 75 cm/s = 0.75 m/s
Distance moved during the hook, d(h) = 5 cm = 0.05 m
Distance moved by the fist, d(f) = 100 cm = 1 m
Average speed of the fist during the hook, v(f) = ? cm/s = m/s
This can be solved by a very simple relation.
d(f) / d(h) = v(f) / v(h)
v(f) = [d(f) * v(h)] / d(h)
v(f) = (1 * 0.75) / 0.05
v(f) = 0.75 / 0.05
v(f) = 15 m/s
Therefore, the average speed of the fist during the hook is 15 m/s or 1500 cm/s
Answer:
the rate that the energy of a system is transformed
Explanation:
We can define energy as the capacity or ability to do work. Power is defined as the rate of doing work or the rate at which energy is transformed. It can also be regarded as the time rate of energy transfer. In older physics literature, power is sometimes referred to as activity.
Power is given by energy/time. Its unit is watt which is defined as joule per second. Another popular unit of power is horsepower. 1 horsepower = 746 watts.
Very large magnitude of power is measured in killowats and megawatts.