Answer:
perimeter of the bottom of the tank is 450 cm
Explanation:
If you want to get area you need the Length, width,and height.
The North Star, or Polaris, is the brightest star in the constellation Ursa Minor, the little bear (also known as the Little Dipper). As viewed by observers in the Northern Hemisphere, Polaris occupies a special place
<h2>Answer: The astronauts are falling at the same rate as the space shuttle as it orbits around earth</h2>
The astronauts seem to float because they are in free fall just like the spacecraft.
However, although they are constantly falling on the Earth, they do not fall because the ship orbits at a sufficient speed (in the same direction of rotation of the Earth) so that the centrifugal force is balanced with the Earth's gravitational pull.
In other words:
The spaccraft and the astronauts are in free fall but the Earth's surface will never be reached as long as they does not decrease the speed.
Then, as they accelerate toward Earth (regardless of their mass), it curves beneath them and never comes close.
That's why astronauts, having the same acceleration as the spacecraft, feel weightless and see themselves floating.
Answer:
F₃ = 122.88 N
θ₃ = 20.63°
Explanation:
First we find the components of F₁:
For x-component:
F₁ₓ = F₁ Cos θ₁
F₁ₓ = (50 N) Cos 60°
F₁ₓ = 25 N
For y-component:
F₁y = F₁ Sin θ₁
F₁y = (50 N) Sin 60°
F₁y = 43.3 N
Now, for F₂. As, F₂ acts along x-axis. Therefore, its y-component will be zero and its x-xomponent will be equal to the magnitude of force itself:
F₂ₓ = F₂ = 90 N
F₂y = 0 N
Now, for the resultant force on ball to be zero, the sum of x-components of the forces and the sum of the y-component of the forces must also be equal to zero:
F₁ₓ + F₂ₓ + F₃ₓ = 0 N
25 N + 90 N + F₃ₓ = 0 N
F₃ₓ = - 115 N
for y-components:
F₁y + F₂y + F₃y = 0 N
43.3 N + 0 N + F₃y = 0 N
F₃y = - 43.3 N
Now, the magnitude of F₃ can be found as:
F₃ = √F₃ₓ² + F₃y²
F₃ = √[(- 115 N)² + (- 43.3 N)²]
<u>F₃ = 122.88 N</u>
and the direction is given as:
θ₃ = tan⁻¹(F₃y/F₃ₓ) = tan⁻¹(-43.3 N/-115 N)
<u>θ₃ = 20.63°</u>