1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paul [167]
3 years ago
9

Um carro percorre um trecho de 450 km em escalar media do carro

Physics
1 answer:
Aleks04 [339]3 years ago
7 0

Average speed of the car is defined as the ratio of total distance and total time

So here we will have

v_{avg} = \frac{distance}{time}

now we know that

distance = 450 km

time = 5 h

now from above equation we will have

v = \frac{450 km}{5 h} = 90 km/h

so the average speed will be 90 km/h

You might be interested in
7. A mother pushes her 9.5 kg baby in her 5kg baby carriage over the grass with a force of 110N @ an angle
jasenka [17]

Weight of the carriage =(m+M)g =142.1\ N

Normal force =Fsin(\theta) + W = 197.1\ N

Frictional force =\mu N=27.59\ N

Acceleration =4.66\ m\ s^{-2}

Explanation:

We have to look into the FBD of the carriage.

Horizontal forces and Vertical forces separately.

To calculate Weight we know that both the mass of the baby and the carriage will be added.

  • So Weight(W) =(m+M)\times g =(9.5+5)\ kg \times 9.8 =142.1\ Newton\ (N)

To calculate normal force we have to look upon the vertical component of forces, as Normal force is acting vertically.We have weight which is a downward force along with F_x, force of 110\ N acting vertically downward.Both are downward and Normal is upward so Normal force =Summation\ of\ both\ forces

  • Normal force (N) = Fsin(\theta)+W=110sin(30) + 142.1 =197.1\ N
  • Frictional force (f) =\mu N=0.14\times 197.1 =27.59\ N

To calculate acceleration we will use Newtons second law.

That is Force is product of mass and acceleration.

We can see in the diagram that F_y=Horizontal and F_x=Vertical component of forces.

So Fnet = Fy(Horizontal) - f(friction) = m\times a

  • Acceleration (a) =\frac{Fcos(\theta)-\mu N}{mass(m)} =\frac{(95.26-27.59)}{14.5}= 4.66\ m\ s{^2 }

So we have the weight of the carriage, normal force,frictional force and acceleration.

3 0
3 years ago
The speed of the center of the earth as it orbits the sun is 107257 kmph and the absolute angular velocity of the earth about it
Sindrei [870]

Answer with Explanation:

We are given that

Speed ,v_0=107257 kmph

Angular velocity,\omega=7.292\times 10^{-5} rad/s

Radius of earth,r=6371 km=6371000 m

1 km=1000 m

Linear velocity,v=r\omega=6371000\times 7.292\times 10^{-5}=464.57 m/s

Linear velocity,v=464.57\times \frac{18}{5}=1672.46 km/h

Velocity at point A,v_A=-vi+v_0 j=-1672.46 i+107257j kmph

Velocity at point B,v_B=v_0j-vj=107257j-1672.46j=105584.54j kmph

Velocity at point C,v_C=v_0j+vi=1672.46 i+107257j kmph

Velocity at point  D,v_D=v_0j+vj=107257j+1672.46j=108929.46jkmph

3 0
3 years ago
Choose either eclipses or lunar phases and make a model of the event. Your model can take any form, providing it can explain how
babymother [125]

Answer: See the explanation below.

Explanation: For this assignment, I chose to display how eclipses are created.

My model was made utilizing a 3D displaying device program for all intents and purposes. The items utilized are three models I made for this presentation, Earth, the moon, and the sun. These three models will be utilized for the showcase.  

The light that shines from the sun would create a shadow on the moon. The moon would then catch the light that should've arrived on Earth, making the shadow we call an eclipse. Earth gets a shadow of the moon and the remainder of Earth is lit up from the rest of the light, making an eclipse.  

The individual I demonstrated my project to was [<em>Someone you know</em>], [<em>Pronoun</em>] said it precisely took after the occasion of an eclipse. The light from the sun being shined on to the moon rather than the Earth, creating the shadow we call an eclipse.

5 0
3 years ago
The discovery of which particle proved that the atom is not indivisible?
Blababa [14]
Maybe cuz your fat fat biches
8 0
4 years ago
A. What is the equation describing the motion of a mass on the end of a spring which is stretched 8.8cm from equilibrium and the
Naddik [55]

Answer:

a) x = 8.8 cm * cos (9.52 rad/s * t)

b) x = 8.45 cm

Explanation:

This is a Simple Harmonic Motion, and most Simple Harmonic Motion equations start from the equilibrium point. In this question however, we are starting from the max displacement the equations, and thus, it ought to be different.

From the question, we are given that

A = 8.8 cm = 0.088 m

t = 0.66 s

Now, we need to find the angular speed w, such that

w = 2π/T

w = (2 * 3.142) / 0.66

w = 6.284 / 0.66

w = 9.52 rad/s

The displacement equation of Simple Harmonic Motion is usually given as

x = A*sin(w*t)

But then, the equation starts from the equilibrium point at 0 sec, i.e x = 0 m

When you have to start from the max displacement, then the equation would be

x = A*cos(w*t).

So when t = 0 the cos(0) = 1, and then x = A which is max displacement.

Thus, the equation is

x = 8.8 cm * cos (9.52 rad/s * t)

At t = 1.7 s,

x = 8.8 cos (9.52 * 1.7)

x = 8.8 cos (16.184)

x = -8.45 cm

5 0
4 years ago
Read 2 more answers
Other questions:
  • Water waves approach an underwater "shelf" where the velocity changes from 2.8 m/s to 2.1 m/s. If the incident wave crests make
    11·1 answer
  • Which element has an atomic number of 9 and an atomic mass of 19?
    9·2 answers
  • (03.02 MC) Two students made the following statements to describe atmospheric conditions at a location. Student A: This area has
    9·1 answer
  • Waves that make up the visible part of the electromagnetic spectrum have
    12·1 answer
  • Which particles do not affect the stability of the atom
    9·1 answer
  • Juan whose weight is 500 N is standing on the ground. The force the ground exerts on
    15·2 answers
  • wave absorption results in some of the wave's energy being converted into thermal energy. Describe an example of a time you've e
    6·1 answer
  • Can you answer one of the questions
    12·1 answer
  • Write a beta decay equation for the
    5·1 answer
  • A simple pendulum of length 1.5m has a bob of mass 2.0kg. State the formula for the period of small oscillations and evaluate it
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!