Answer:
Option B

Explanation:








Centripetal acceleration 
Tangential component=dr=2*1.75=3.5

Answer:
V = 125.7m/min
Explanation:
Given:
L = 400 mm ≈ 0.4m
D = 150 mm ≈ 0.15m
T = 5 minutes
F = 0.30mm ≈ 0.0003m
To calculate the cutting speed, let's use the formula :

We are to find the speed, V. Let's make it the subject.

Substituting values we have:

V = 125.68 m/min ≈ 125.7 m/min
Therefore, V = 125.7m/min
Answer:
The molecular weight will be "28.12 g/mol".
Explanation:
The given values are:
Pressure,
P = 10 atm
= 
=
Temperature,
T = 298 K
Mass,
m = 11.5 Kg
Volume,
V = 1000 r
= 
R = 8.3145 J/mol K
Now,
By using the ideal gas law, we get
⇒ 
o,
⇒ 
By substituting the values, we get


As we know,
⇒ 
or,
⇒


Answer:
The total tube surface area in m² required to achieve an air outlet temperature of 850 K is 192.3 m²
Explanation:
Here we have the heat Q given as follows;
Q = 15 × 1075 × (1100 -
) = 10 × 1075 × (850 - 300) = 5912500 J
∴ 1100 -
= 1100/3
= 733.33 K

Where
= Arithmetic mean temperature difference
= Inlet temperature of the gas = 1100 K
= Outlet temperature of the gas = 733.33 K
= Inlet temperature of the air = 300 K
= Outlet temperature of the air = 850 K
Hence, plugging in the values, we have;

Hence, from;
, we have
5912500 = 90 × A × 341.67

Hence, the total tube surface area in m² required to achieve an air outlet temperature of 850 K = 192.3 m².
Answer: Option D, piezoelectric pressure guage
Explanation: Quartz crystal possess a very useful quality in science as they can generate small charges when pressure is applied to them or when they are hit. This property can be harnessed to construct a piezoelectric pressure gauge which would be used to measure and indicate changes in pressure, the quartz crystal releases little voltage each time there is an applied pressure . This device would be able to sense changes in pressure as there would voltage proportional to the applied pressure.