This question is not complete, the complete question is;
The stagnation chamber of a wind tunnel is connected to a high-pressure air bottle farm which is outside the laboratory building. The two are connected by a long pipe of 4-in inside diameter. If the static pressure ratio between the bottle farm and the stagnation chamber is 10, and the bottle-farm static pressure is 100 atm, how long can the pipe be without choking? Assume adiabatic, subsonic, one-dimensional flow with a friction coefficient of 0.005
Answer:
the length of the pipe is 11583 in or 965.25 ft
Explanation:
Given the data in the question;
Static pressure ratio; p1/p2 = 10
friction coefficient f = 0.005
diameter of pipe, D =4 inch
first we obtain the value from FANN0 FLOW TABLE for pressure ratio of ( p1/p2 = 10 )so
4fL
/ D = 57.915
we substitute
(4×0.005×L
) / 4 = 57.915
0.005L
= 57.915
L
= 57.915 / 0.005
L
= 11583 in
Therefore, the length of the pipe is 11583 in or 965.25 ft
Zrizorzlzfxxxgoxxxxpgxtoxxxhxuxyf
A clean machine is a clean machine :-)
Answer:
It would take approximately 305 s to go to 99% completion
Explanation:
Given that:
y = 50% = 0.5
n = 1.7
t = 100 s
We need to first find the parameter k from the equation below.

taking the natural logarithm of both sides:

Substituting values:

Also
![t^n=-\frac{ln(1-y)}{k}\\t=\sqrt[n]{-\frac{ln(1-y)}{k}}](https://tex.z-dn.net/?f=t%5En%3D-%5Cfrac%7Bln%281-y%29%7D%7Bk%7D%5C%5Ct%3D%5Csqrt%5Bn%5D%7B-%5Cfrac%7Bln%281-y%29%7D%7Bk%7D%7D)
Substituting values and y = 99% = 0.99
![t=\sqrt[n]{-\frac{ln(1-y)}{k}}=\sqrt[1.7]{-\frac{ln(1-0.99)}{2.76*10^{-4}}}=304.6s](https://tex.z-dn.net/?f=t%3D%5Csqrt%5Bn%5D%7B-%5Cfrac%7Bln%281-y%29%7D%7Bk%7D%7D%3D%5Csqrt%5B1.7%5D%7B-%5Cfrac%7Bln%281-0.99%29%7D%7B2.76%2A10%5E%7B-4%7D%7D%7D%3D304.6s)
∴ t ≅ 305 s
It would take approximately 305 s to go to 99% completion