1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stells [14]
2 years ago
10

What are two factors that determine the thermal energy of a substance

Engineering
1 answer:
Sav [38]2 years ago
6 0
Mass and chemical composition
You might be interested in
There are two questions about SolidWorks.
Nataliya [291]

Answer:

1. It is a good practice to fully define a sketch to avoid having erroneous dimensions on the faces of a solid, this avoids that when it is required to make an assembly with the drawn part appear assembly errors.

2. The 2D sketch should always be done on a plane, so solidworks would ask you to select a plane on which you want to make the sketch, on the other hand, if it is a 3D sketch, solidworks allows you to do it without the need for Select any plane.

4 0
2 years ago
Why is the lubrication system of an internal combustion engine equipped with an oil filter?
Ierofanga [76]

Answer:

to filter out any impurities such as metal shavings in the oil

6 0
3 years ago
______ are an idication that your vehicle may be developing a cooling system problem.
iris [78.8K]

Answer:

The temperature gauge showing that the vehicle has been running warmer or has recently began to have issues from overheating is  an idication that your vehicle may be developing a cooling system problem.

Explanation:

8 0
3 years ago
Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow ra
gladu [14]

Answer:

a) T_{2}=837.2K

b) e=91.3 %

Explanation:

A) First, let's write the energy balance:

W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 \frac{kJ}{kgK} And its specific R constant is 0.287 \frac{kJ}{kgK}.

The only unknown from the energy balance is T_{2}, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K

B) The isentropic efficiency (e) is defined as:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}

Where {h_{2s} is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because h_{2}-h_{1} can be obtained from the energy balance  \frac{W}{m}=h_{2}-h_{1}

h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}

An entropy change for an ideal gas with  constant Cp is given by:

s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})

Applying logarithm properties:

ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}

Then,

T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K

So, now it is possible to calculate h_{2s}-h_{1}:

h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}

Finally, the efficiency can be calculated:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3 %

4 0
3 years ago
A cylindrical specimen of steel has an original diameter of 12.8 mm. It is tested in tension its engineering fracture strength i
Mama L [17]

Answer:

a) The ductility = -30.12%

the negative sign means reduction

Therefore, there is 30.12% reduction

b) the true stress at fracture is 658.26 Mpa

Explanation:

Given that;

Original diameter d_{o} = 12.8 mm

Final diameter d_{f} = 10.7

Engineering stress  \alpha _{E} = 460 Mpa

a) determine The ductility in terms of percent reduction in area;

Ai = π/4(d_{o} )²  ; Ag = π/4(d_{f} )²

% = π/4 [ ( (d_{f} )² - (d_{o} )²) / ( π/4  (d_{o} )²) ]

= ( (d_{f} )² - (d_{o} )²) / (d_{o} )² × 100

we substitute

= [( (10.7)² - (12.8)²) / (12.8)² ] × 100

= [(114.49 - 163.84) / 163.84 ] × 100

= - 0.3012 × 100

= -30.12%

the negative sign means reduction

Therefore, there is 30.12% reduction

b) The true stress at fracture;

True stress  \alpha _{T} = \alpha _{E} ( 1 +  E_{E} )

E_{E}  is engineering strain

E_{E}  = dL / Lo

= (do² - df²) / df² = (12.8² - 10.7²) / 10.7² = (163.84 - 114.49) / 114.49

= 49.35 / 114.49  

E_{E} = 0.431

so we substitute the value of E_{E}  into our initial equation;

True stress  \alpha _{T} = 460 ( 1 +  0.431)

True stress  \alpha _{T} = 460 (1.431)

True stress  \alpha _{T} = 658.26 Mpa

Therefore, the true stress at fracture is 658.26 Mpa

6 0
2 years ago
Other questions:
  • Compare automation and autonomous
    12·1 answer
  • Water flovs in a pipe of diameter 150 mm. The velocity of the water is measured at a certain spot which reflects the average flo
    13·1 answer
  • A mass of 8000 kg of slightly enriched uranium (2% U-235, 98% U-238) is exposed for 30 days in a reactor operating at (6.18) hea
    5·1 answer
  • As a top-level executive at your own company, you are worried that your employees may steal confidential data too easily by down
    12·1 answer
  • Which type of load is not resisted by a pinned joint? A) Moment B) Shear C) Axial D) Compression
    7·1 answer
  • 2.44mW of incident 520 nm light is directed through a1 cm sample cuvette and 0.68 mW of Plight exits the sample what is the abso
    9·1 answer
  • Trapezoidal screw press project
    6·1 answer
  • Is A fine by the EPA may be imposed on the employer or
    8·1 answer
  • 1)
    13·1 answer
  • Why is engineering profession important ​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!