Answer: 67.392s
Explanation: detailed calculation is shown below
Answer:
Maximum shear stress is;
τ_max = 1427.12 psi
Explanation:
We are given;
Power = 2 HP = 2 × 746 Watts = 1492 W
Angular speed;ω = 450 rev/min = 450 × 2π/60 rad/s = 47.124 rad/s
Diameter;d = 1 in
We know that; power = shear stress × angular speed
So,
P = τω
τ = P/ω
τ = 1492/47.124
τ = 31.66 N.m
Converting this to lb.in, we have;
τ = 280.2146 lb.in
Maximum shear stress is given by the formula;
τ_max = (τ•d/2)/J
J is polar moment of inertia given by the formula; J = πd⁴/32
So,
τ_max = (τ•d/2)/(πd⁴/32)
This reduces to;
τ_max = (16τ)/(πd³)
Plugging in values;
τ_max = (16 × 280.2146)/((π×1³)
τ_max = 1427.12 psi
Answer: Option D) 298 g/mol is the correct answer
Explanation:
Given that;
Mass of sample m = 13.7 g
pressure P = 2.01 atm
Volume V = 0.750 L
Temperature T = 399 K
Now taking a look at the ideal gas equation
PV = nRT
we solve for n
n = PV/RT
now we substitute
n = (2.01 atm x 0.750 L) / (0.0821 L-atm/mol-K x 399 K
)
= 1.5075 / 32.7579
= 0.04601 mol
we know that
molar mass of the compound = mass / moles
so
Molar Mass = 13.7 g / 0.04601 mol
= 297.7 g/mol ≈ 298 g/mol
Therefore Option D) 298 g/mol is the correct answer
Answer:
The answer is
C. Split phase motor
Explanation:
Clamp meters rely on the principle of magnetic induction to make non contact AC current measurements. Electric current flowing through a wire produces a magnetic field.
Which is similar to basic mode of operation of electric motor and split phase motor is a type of electric motor.
What is a a clamp on meter?
Clamp meters are electrical testers which have wide jaws that are able to clamp around an electrical conductor. Originally designed as a single purpose tool for measuring AC current, clamp meters now include inputs for accepting test leads and other probes that support a wide range of electrical measurements, the jaws of a clamp meter permit work in tight spaces and permits current measurements on live conductors without circuit interruption.