Answer:
if ur gonna cry then just dont cry its simple logic guyss!!!!!!!!!!!!
Explanation:
The mass, in grams, of the sample of methanol (CH₃OH) is 64 grams.
<h3>How we calculate mass from moles?</h3>
Mass of any substance can be calculated by using moles as:
n = W/M, where
W = required mass
M = molar mass
In the question that:
Moles of methanol = 2mole
Molar mass of methanol = 32g/mole
On putting these values in the above equation, we get
W = n × M
W = 2mole × 32g/mole = 64g
Hence, 64 grams is the mass of the sample.
To know more about moles, visit the below link:
brainly.com/question/15374113
2 SO₃ --> 2 SO₂ + O₂
I 12 0 0
C -2x +2x +x
---------------------------------------------
E 12-2x 2x x
Since the moles of SO₂ at equilibrium is 3 mol, 2x = 3. Then, x = 1.5 mol. So, the amounts at equilibrium is:
SO₃: 12 - 2(1.5) = 9
SO₂: 2(1.5) = 3
O₂: 1.5
The formula for K basing on the stoichiometric reaction is:
K = [SO₂]²[O₂]/[SO₃]²
where the unit used is conc in mol/L.
K = [3 mol/3 L]²[1.5 mol/3 L]/[9 mol/3 L]²
<em>K = 0.0556</em>
Answer:
The correct answers are: <u>Each oxygen of carbonate ion has -2/3 or -0.67 charge.</u>
<u>Bond order of each carbon‑oxygen bond in the carbonate ion</u> = <u>1.33</u>
Explanation:
The carbonate ion (CO₃²⁻) is an organic compound, in which a carbon atom is covalently bonded to three oxygen atoms. The net formal charge on a carbonate ion is −2.
The carbonate ion is <u>resonance stabilized</u> and has three equivalent resonating structures, which exhibits that all the three carbon-oxygen bonds in a carbonate ion are equivalent.
In the resonance hybrid of carbonate ion,<u> the negative charge is equally delocalized on all the three oxygen atoms. </u>
<u>Thus, each bonded oxygen has -2/3 or -0.67 charge.</u>
<u />
In a carbonate ion there is one double bond oxygen (C=O) and two single bonded oxygen (C-O). Bond order of 1 C=O is 2 and bond order of C-O is 1.
∴ <u>Bond order</u> = sum of all bond orders ÷ number of bonding groups = (2+1+1) ÷ 3 = <u>1.33</u>