Answer:
The energies corresponding to each of the allowed orbitals are called energy levels.
Explanation:
A scientist known as Niels Bohr put forward that electrons in an atom covers some permitted orbitals with a specific energy. In other words, the energy of an electron in an atom is not continuous, but 'quantized.' The energies corresponding to each of the allowed orbitals are called energy levels.

I think the correct answer from the choices listed above is the second option. The relationship between the direction of energy and wave motion in a transverse wave would be the <span>energy direction is perpendicular to the motion of the wave. Hope this answers the question. Have a nice day.</span>
The duty of the AHJ is to: (C). review installation designs and determine if they fall under Code jurisdiction
<h3>Meaning of AHJ</h3>
AHJ can be defined as that means Authority Having Jurisdiction
AHJ can be defined as an organization, office, or individual that are responsible for the issuance of permits, enforcing the requirements of a code or standard and approving materials or a procedure.
In conclusion, The role of the AHJ are outlined in the paragraph above.
Learn more about Jurisdiction: brainly.com/question/10377896
#SPJ1
Answer:
Micro and radio waves.
Lower energy.
Gamma rays.
Explanation:
The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths.
Ionising radiation os defined as the energy required of photons of a wave to ionize atoms, causing chemical reactions.
The energy of the wave depends on both the amplitude and the frequency. If the energy of each wavelength is a discrete packet of energy, a high-frequency wave will deliver more of these packets per unit time than a low-frequency wave. In summary, the longer the wavelength, the lower the energy to ionise.
The velocity of a wave is directly proportional to the frequency of that wave.
c = f * lambda
Where,
c = velocity of the wave
f = frequency of the wave = 1/time
Lambda = wavelength.
From the above expression, the longer the wavelength, lambda the shorter the frequency.
Examples of waves with longer wavelengths are, micro and radio waves, while radiations with shorter wavelengths like gamma rays.
Answer:
Same frequency, shorter wavelength
Explanation:
The speed of a wave is given by


where,
f = Frequency
= Wavelength
It can be seen that the wavelength is directly proportional to the velocity.
Here the frequency of the sound does not change.
But the velocity of the sound in air is slower.
Hence, the frequency remains same and the wavelength shortens.