The transition from gas to liquid is called condensation. An example would be water droplets forming on an ice cold glass placed in room temperature.
Utilize the formula: 
= Final Velocity (86 m/s)
= Initial Velocity (0 m/s)
a = acceleration (m/s²)
t = Time (100 seconds)
As a result,
86 m/s = 0 + (a)(100 seconds)
Using algebra, divide 86 m/s by 100 seconds:
86 m/s = 100a
a = 0.86 m/s²
Rounded to one decimal place: 0.9 m/s²
Let me know if you have any questions!
Answer:
Equilibrium. • When an object is in equilibrium (either at rest or moving with constant velocity), the net force acting on it zero.
Answer: Elastic Potential Energy
Explanation: Energy present on compressed strings is called Elastic Potential Energy.
Newton's law of conservation states that energy of an isolated system remains a constant. It can neither be created nor destroyed but can be transformed from one form to the other.
Implying the above law of conservation of energy in the case of pendulum we can conclude that at the bottom of the swing the entire potential energy gets converted to kinetic energy. Also the potential energy is zero at this point.
Mathematically also potential energy is represented as
Potential energy= mgh
Where m is the mass of the pendulum.
g is the acceleration due to gravity
h is the height from the bottom z the ground.
At the bottom of the swing,the height is zero, hence the potential energy is also zero.
The kinetic energy is represented mathematically as
Kinetic energy= 1/2 mv^2
Where m is the mass of the pendulum
v is the velocity of the pendulum
At the bottom the pendulum has the maximum velocity. Hence the kinetic energy is maximum at the bottom.
Also as it has been mentioned energy can neither be created nor destroyed hence the entire potential energy is converted to kinetic energy at the bottom and would be equivalent to 895 J.