Answer:Electoral Vote
Explanation:i did it before
Answer:
The vibrational frequency of the rope is 5 Hz.
Explanation:
Given;
number of complete oscillation of the rope, n = 20
time taken to make the oscillations, t = 4.00 s
The vibrational frequency of the rope is calculated as follows;

Therefore, the vibrational frequency of the rope is 5 Hz.
Answer:

Explanation:
The frequency of a wave can be found using the following formula.

where <em>f</em> is the frequency, <em>v</em> is the velocity/wave speed, and λ is the wavelength.
The wavelength is 10 meters and the velocity is 200 meters per second.
- 1 m/s can also be written as 1 m*s^-1
Therefore:

Substitute the values into the formula.

Divide and note that the meters (m) will cancel each other out.


- 1 s^-1 is equal to Hertz
- Therefore, our answer of 20 s^-1 is equal to 20 Hz

The frequency of the wave is <u>20 Hertz</u>
To solve this problem we will apply the concepts of the Magnetic Force. This expression will be expressed in both the vector and the scalar ways. Through this second we can directly use the presented values and replace them to obtain the value of the magnitude. Mathematically this can be described as,


Here,
q = Charge
v = Velocity
B = Magnetic field

Our values are given as,




Replacing,


Therefore the size of the magnetic force acting on the bumble bee is 