Answer:
B
Explanation:
in a liquid the particles are widespread and move around each other but in a solid they move in place and are tightly packed
Answer:
Part A:
Distance=864000 m=864 km
Part B:
Energy Used=ΔE=8638000 Joules
Part C:

Explanation:
Given Data:
v=20m/s
Time =t=12 hours
In Secs:
Time=12*60*60=43200 secs
Solution:
Part A:
Distance = Speed**Time
Distance=v*t
Distance= 20*43200
Distance=864000 m=864 km
Part B:
Energy Used=ΔE= Energy Required-Kinetic Energy of swans
Energy Required to move= Power Required*time
Energy Required to move=200*43200=8640000 Joules
Kinetic Energy=

Energy Used=ΔE=8640000 -2000
Energy Used=ΔE=8638000 Joules
Part C:
Fraction of Mass used=Δm/m
For This first calculate fraction of energy used:
Fraction of energy=ΔE/Energy required to move
ΔE is calculated in part B
Fraction of energy=8638000/8640000
Fraction of energy=0.99977
Kinetic Energy=
Now, the relation between energies ratio and masses is:



Answer:
The statement "The magnetic field of a magnet comes out of the north pole and goes into the south pole" is imprecise
Explanation:
This is because the zero divergence equation (∇ · B = 0 ) is valid for any magnetic field, even if it is time dependent rather than static. Physically, it means that there are no magnetic charges otherwise we would have ∇ · B ∝ ρmag instead of ∇ · B = 0. Consequently, the magnetic field lines never begin or end anywhere in space; instead they form closed loops or run from infinity to infinity.
Answer:
kilograms and grams
Explanation:
kilograms is the stadard unit for mass according to the SI system.
Grams is another unit for mass.
Answer:
a) 51.8 cm³
b) kg/m³ is a dimension of density (mass/volume). The regular unitys for volume are m³, cm³, L, gallons.
Explanation:
a) The density of pure gold is 19.3 g/cm³. When put in water, the piece of gold will occupy a volume, so that the volume of water will be displaced. To know the volume, we must divide the mass for the density (mass must be in grams because of the units of the density)
V = 1000/19.3
V = 51.8 cm³